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Four Generations of Alpha
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Cost of Additional Performance
• Very roughly (at constant 

technology):
– 80x area
– 12x power
– 2-3x performance

• Pervasive mobile 
applications cannot 
afford such costs:
– Volume products are still 

sensitive to area
– Energy is at a premium!

Can we get the performance 
without paying the price?!
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Reminder of 
Embedded Processors Specificities

• Cost used to be the only concern; now performance/cost is at 
premium and still not performance alone as in PCs (Intel model); 
performance is often a constraint

• Binary compatibility is less of an issue for embedded systems
• Systems-on-Chip make processor volume irrelevant (moderate 

motivation toward single processor for all products)

DSPs?
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Increasing the 
Efficiency of Implementations

• Automatic Processor Customization
1. ISA configuration and extension from applications

• The “fourth generation HLS” ?! (see Martin & Smith, IEEE DTC 2009)

• High-Level Synthesis
2. Statically scheduled HLS

• The “VLIW” way…
• Taming DSP and multimedia applications

3. Dynamically scheduled HLS
• Conquering prediction and speculation
• A better match to control-dominated irregular applications?

From C programs to more efficient 
“programmable” solutions
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1
Automatic Processor Customization
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Tensilica Xtensa
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A simple RISC
basic architecture with
some customizability

Several optional
customizable
predefined

blocks

Prepared interfaces for user-defined customizations
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ARC 625D
Configuration Possibilities

• Processor:
– Register file type and size
– Number of interrupts and pins
– Reset state
– Endianness

• Cache:
– Cache type: Instruction and/or Data
– Size: 2k - 32k Bytes
– Ways: 1 - 4
– Line Length: 16 - 128 bytes

• Closely Coupled Memory:
– Instruction RAM: 1k - 512k bytes
– Data RAM: 2k - 32k bytes

• Instructions:
– NORM - find the first "0" in a 32 bit 

word
– SWAP - switch locations of the top 

and bottom 16 bit fields
– MULT32 - fast 32 x 32 bit multiplier

• DSP Functions:
– 24x24 MAC
– Dual 16x16 MAC
– 32x16 MAC
– Extended Arithmetic Package
– Dual Viterbi Butterfly
– CRC Acceleration
– Audio Acceleration Package
– XY Memory 1-2 Banks, 1k - 32k bytes, 

single or dual ported
• Peripherals:

– Timers
• Bus Components:

– BVCI Arbiter
– AMBA AHB

• Debug:
– JTAG interface
– Actionpoints
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Benefits of Customization
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Out-of-the-Box
Xtensa LX is
in the pack
with other
processors

Customization
quickly raises the
same architecture 

and breaks 
out of the pack

Area and power efficiency

Beware: This is a marketing slide…
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Mainstream ASIC/FPGA Processors and 
Specialisation?

All the recent embedded ASIC/FPGA processors offer some sort of 
specialisation:
• Parametric resources (STM Lx/ST200, ARC Cores, Tensilica Xtensa, Altera 

Nios, etc.)
• Arbitrary functional units or tightly coupled coprocessors (STM Lx/ST200, 

IFX Carmel 20xx, ARM, Tensilica Xtensa, Altera Nios, MIPS CorExtend, etc.)

But all assume an onerous
manual study and design!
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Tensilica Xpres
Automatic Configuration Tool
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Set of Pareto 
points

Interesting CS problems to explore the design space efficiently!
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Compilers as Design Tools

Standard
Processor

Application Compiler Simulator Report

System Description
(caches, buses…)

Application Compiler Configurable
Simulator Report

Processor & System Description

Application Retargetable
Compiler

Retargetable
Simulator Report

Traditional

Simulation based

Compiler-
in-the-Loop
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EDA Meets Computer Architecture

• Tensilica (founded 1997) has been bought by Cadence in 2013

• ARC International (founded in the early 1990s) has been bought by Virage 
Logic in 2009 and Virage Logic has been acquired by Synopsys in 2010

• Little known progress in automating the customization process, though…
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User Designed Customizations?
Instruction Set Extensions

• A “safe” technique for extensive customization

• Available in many commercial processors (from MIPS, STM, IFX, Tensilica, 
ARC, Xilinx, Altera,…)

LOAD UNIT

DECODE

ALU

STORE UNIT

FPU

R1
R2
R3

EXECUTE

Microprocessor

R4
R5
…

AFU?
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Instruction Set Extensions (ISE)
• Collapse a subset of the Direct Acyclic 

Graph nodes into a single Functional 
Unit (AFU)
– Exploit cheaply the parallelism within the 

basic block
– Simplify operations with constant 

operands 
– Optimise sequences of instructions (logic, 

arithmetic, etc.)
– Exploit limited precision
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Elementary Motivational Example
An Important Kernel…

/* init */
a <<= 8;
/* loop */
for (i = 0; i < 8; i++) {

if (a & 0x8000) {
a = (a << 1) + b;

} else {
a <<= 1;

}
}
return a & 0xffff; 

Shift-and-add
unsigned
8 x 8-bit

multiplication
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Software Predication
/* init */
a <<= 8;
/* loop */
for (i = 0; i < 8; i++) {

p1 = - ((a & 0x8000) >> 15);
a = (a << 1) + b & p1;

}
return a & 0xffff; 

Predicate mask
(0 or –1 = 0xfffffff)

Shift Predicated
Add
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Loop Kernel DAG
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New Unit To Accelerate
Shift-and-Add Multiplication Loop

Register File

ALU LD/ST MSTEP

if (Rn [31] = = 1)
then Rn  (Rn << 1) + Rm

else Rn  (Rn << 1)One instruction added 


loop kernel reduced 
to 15-30%
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Loop Unrolling
/* init */
a <<= 8;
/* no loop anymore */
p1 = - ((a & 0x8000) >> 15); a = (a << 1) + b & p1;
p1 = - ((a & 0x8000) >> 15); a = (a << 1) + b & p1;
p1 = - ((a & 0x8000) >> 15); a = (a << 1) + b & p1;
p1 = - ((a & 0x8000) >> 15); a = (a << 1) + b & p1;
p1 = - ((a & 0x8000) >> 15); a = (a << 1) + b & p1;
p1 = - ((a & 0x8000) >> 15); a = (a << 1) + b & p1;
p1 = - ((a & 0x8000) >> 15); a = (a << 1) + b & p1;
p1 = - ((a & 0x8000) >> 15); a = (a << 1) + b & p1;
return a & 0xffff; 
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Full DAG
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New Unit To Accelerate
Multiplication?! Yeah, a MUL…

Register File

ALU LD/ST MUL

Rn  (Rn & 0x0000.ffff) x (Rm & 0x0000.ffff)

One instruction added 


function reduced by a 
factor 10-15
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Classic “Specialisation”…
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Why Hardware Is Better?

• Spatial computation
– Cheap “ILP” without true ILP support

• No quantization of time in clock cycles for each operation/instruction
– Operation chaining

• Hardware is different 
– Constants may be propagated
– Precision can be tuned (bitwidth analysis)
– Arithmetic components can be optimized
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Spatial Computation

Spatial Computing Temporal Computing
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ALU

R6: Y
R5: tmp
R4: X
R3: C
R2: B
R1: A

MUL R4 R4 R5
MUL R4 R2 R6
ADD R3 R6 R6
MUL R1 R5 R5
MUL R5 R6 R6

x x

x

+

+

A

B
x

C



2
6

No Time Quantization

• Effective occupation of the execute stage

w/o AFU

with AFU
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Constants
Example

/* an excerpt from adpcm.c */
/* adpcmdecoder, mediabench */

vpdiff = step>>3;
if (delta & 4) vpdiff += step;
if (delta & 2) vpdiff += step>>1;
if (delta & 1) vpdiff += step>>2;

 Exploited to reduce 
complexity—e.g.,

a*5  a<<2+a

 Hardcoded into logic

 Bitwise operations
(e.g., on delta, step)
reduce to wires
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Bitwidth Analysis
Example

/* an excerpt from adpcm.c */
/* adpcmencoder, mediabench */

index = indexTable[delta];

if (index < 0) index = 0;
if (index > 88) index = 88;

step = stepsizeTable[index];

0 ≤ index ≤ 88
7 bits sufficient for 

representation
Faster arithmetic 

components, etc.
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Arithmetic Optimizations

• Arithmetic operations often appear in groups (dataflow graphs)
• A literal/sequential  implementation may not make the best of the potential available
• A different number representation can be a game-changer

– May bring large advantages, often without higher hardware cost
– Big O complexity O() may change with a different representation!
– E.g., carry-save adders, column compressors, etc. 

• Typical example: MAC
– Only marginally slower than corresponding MUL
– Practically same complexity
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Why Hardware Is Better?

Exploit data parallelism in 
hardware

Exploit constant for logic
simplification

Some operations reduce to 
wires in hardware

Exploit arithmetic properties 
for efficient chaining of 
arithmetic operations (e.g., 
carry save)
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Gain Potentials in Ad-hoc FUs:
Tangible Cycle Savings Possible

No hardware needed

No hardware needed

Similar to MUL but less 
additive terms

One more additive term in 
carry-save/Wallace tree

One more additive term in 
carry-save/Wallace tree 

(as in MAC)

Critical Path ~M
U

L/M
AC
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Automatic ISE Discovery

Formulate it as an 
optimization problem

Find subgraphs
1. having a user-defined maximum number 

of inputs and outputs,
2. convex,
3. possibly including disconnected 

components, and
4. that maximise the overall speedup
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Automatic ISE Discovery
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Automatic ISE Discovery
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Processor Customization?

• Arguably the most widespread method of designing embedded hardware: selecting 
one of very many existing processors or configuring the parameters of a family of 
processors amounts to customization for a set of applications

• Little automation, though: still mostly a manual design-space exploration; glimpses of 
automation in the 2000s seem lost

• Automatic ISE discovery could be a more promising automatic customization 
opportunity, but also disappeared in the late 2000s (the “fourth generation HLS” is 
dead?)
– Pros: Focus on automatic design of datapath and leave control to manually optimized processors 

(prediction, speculation, etc.)
– Cons: Limited scope of exploitable parallelism (datapath parallelism and convertible control—e.g., 

predication, unrolling)
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2
Statically Scheduled High-Level Synthesis

(with Lana Josipović)
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Beyond Dataflow

• Somehow, ISE is confined to dataflow or convertible control flow, and this 
limits exploitable parallelism

• Traditional HLS gets rid of the processor altogether and uses the C/C++ 
specification to build hardware

• It represents an attempt (started in the late ’80s and early ’90s) to raise 
the abstraction level of hardware design above the classic RTL level (i.e., 
synthesizable VHDL and Verilog)
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A Bit of History
• Generation 0 (1970s), prehistory

– Groundbreaking academic work
• Generation 1 (1980s until early 1990s)

– Mostly important academic work; few commercial players
– Focus on scheduling, binding, etc.
– Almost competing in adoption with RTL logic synthesis

• Generation 2 (mid 1990s until early 2000s)
– Main EDA players offer commercial HLS tools; commercial failure
– Assumed RTL designers would embrace the technology, but there was not enough gain for them
– Wrong programming languages (VHDL or new languages)

• Generation 3 (from early 2000s)
– Currently available commercially (e.g., Vivado HLS); some successes
– Connected to the rise of FPGAs (fast turnaround, inexperienced designers, etc.)
– Focus on C/C++ and on demanding dataflow/DSP applications
– Better results (progress in compilers, including VLIW)
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What Circuits 
Do We Want HLS to Generate?

• Output of HLS is ill-defined
– An example could be to generate always the same hardware (the RTL of a software 

processor) and binary code for it—hardly what we usually mean by HLS…

• The informal expectation is a circuit much more massively parallel than 
what a classic software processor can achieve



4
0

Architectural Template

• We need to chose a template which we customize to and optimize for the code at 
hand

• Usually something of this sort:

Controller

Datapaths

*
+
* –

Memory and 
Steering

… …

………Inputs

…Outputs



4
1

Scheduling the Datapath

• Assign operations to functional units respecting data dependencies and functional unit 
latencies

* * *
+

*

_

+

a b c d e f

g

ASAP, unconstrained

*

*
+ *

_
*

+

a b c d e f

g

ASAP, constraint: 1 mul

Cycles

Clock
Period
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Same as VLIW Scheduling?

• Very similar problem but with some notable differences:
– Exact resources are not fixed; maybe there is a constraint on their total 

cost (e.g., area)
– Clock cycle may be constrained but is in general not fixed; pipelining is 

not fixed (e.g., combinational operations can be chained)
– No register file (which allows connecting everything to everything) but 

ad-hoc connectivity (variable cost and variable time impact)
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Area Optimizations

• There may be cheaper ways to achieve the best latency
• New problem without immediate analogy in VLIWs

* * *
+

*

_

+

a b c d e f

g

ASAP, unconstrained

_

* *

*+ *

+

a b c d e f

g

ASAP, constraint: 2 muls
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Chaining and Pipelining

• Combinational operators can be chained and clock period can often be adjusted 
(shortest not necessarily fastest)

• Also, a new problem without immediate analogy in VLIWs

a b c d

* *

+

+

e

g

1.4 t 1 t

0.6 t

Total time: 4 × 1 t = 4 t

Before operation chaining 
and with fast clock

a b c d

**

e

g

+
+

1.4 t

Total time: 2 × 1.4 t = 2.8 t

After operation chaining 
and with slower clock
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Scheduling under 
Resource Constraints

• Main focus of research in the early days
• The state of the art is based on the paper by Cong & Zhang, DAC 2006:

– Given 
• A CDFG (i.e., a program)
• A set of constraints including dependency constraints, resource constraints, latency constraints, 

cycle-time constraints, and relative timing constraints

– Construct a valid schedule with minimal latency

• Used in recent tools such as Xilinx Vivado HLS
• But… is this all we need?
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Example: FIR

• The array shift_reg is static and represents the last 4 samples of x
• This could be in a function which receives a stream of x (the input signal) 

and produces at each call an element of y (the output signal)

𝑦𝑦𝑘𝑘 = �
𝑖𝑖=0

3

𝑐𝑐𝑖𝑖𝑥𝑥𝑘𝑘−𝑖𝑖

acc = 0;
for (i = 3; i >= 0; i--) {

if (i == 0) {
shift_reg[0] = x;
acc += x * c[0];

} else {
shift_reg[i] = shift_reg[i-1];
acc += shift_reg[i] * c[i];

}
}
y = acc;

𝑦𝑦𝑘𝑘

𝑥𝑥𝑘𝑘
𝑥𝑥𝑘𝑘 …𝑥𝑥𝑘𝑘−3

𝑐𝑐𝑖𝑖
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A Literal Translation…
acc = 0;
for (i = 3; i >= 0; i--) {

if (i == 0) {
shift_reg[0] = x;
acc += x * c[0];

} else {
shift_reg[i] = shift_reg[i-1];
acc += shift_reg[i] * c[i];

}
}
y = acc;

1. If-convert control flow 
whenever possible

2. Implement all existing registers
3. Implement datapath for all BBs
4. Create steering wires and 

muxes to connect everything
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Naïve FIR
acc = 0;
for (i = 3; i >= 0; i--) {

if (i == 0) {
shift_reg[0] = x;
acc += x * c[0];

} else {
shift_reg[i] = shift_reg[i-1];
acc += shift_reg[i] * c[i];

}
}
y = acc;
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Manual Code Refactoring

• Direct results are very often highly suboptimal
– See FIR example

• Users should have a sense of what circuit they want to produce and 
suggest it to HLS tools by restructuring the code
– See coming slides

• HLS tools today are not really meant to abstract away hardware design 
issues from software programmers; in practice, they are more like 
productivity tools to help hardware designers explore quickly the space of 
hardware designs they may wish to produce
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Naïve FIR

• We are always computing both sides of the control decision, but which one is needed in a particular 
iteration is perfectly evident

acc = 0;
for (i = 3; i >= 0; i--) {

if (i == 0) {
shift_reg[0] = x;
acc += x * c[0];

} else {
shift_reg[i] = shift_reg[i-1];
acc += shift_reg[i] * c[i];

}
}
y = acc;
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Loop Peeling

• The loop is doing two tasks completely independent from each other (shifting the signal samples and 
computing the new output sample), so shall we split it into two loops?

acc = 0;

for (i = 3; i > 0; i--) {
shift_reg[i] = shift_reg[i-1];
acc += shift_reg[i] * c[i];

}

shift_reg[0] = x;
acc += x * c[0];

y = acc;
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Loop Fission

• Not terribly useful per se, just two independent and parallel machines
• Does this create an opportunity to unroll loop 1? Note that it contains no computation…

for (i = 3; i > 0; i--) {
shift_reg[i] = shift_reg[i-1];

}
shift_reg[0] = x;

acc = 0;
for (i = 3; i >= 0; i--) {

acc += shift_reg[i] * c[i];
}
y = acc;
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Loop Unrolling (loop 1)

• Loop 1 has become a “pipeline” (although a fairly degenerate one) by unrolling—this is certainly 
desirable regardless

• Loop 2 is not pipelined: the initiation interval is exactly equal to the latency of the kernel—unroll?

shift_reg[3] = shift_reg[2];
shift_reg[2] = shift_reg[1];
shift_reg[1] = shift_reg[0];
shift_reg[0] = x;

acc = 0;
for (i = 3; i >= 0; i--) {

acc += shift_reg[i] * c[i];
}
y = acc;
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Loop Unrolling (loop 2)

• De facto, a new iteration now starts every cycle
• But resources may be too much—and partial unrolling would achieve some pipelining but yet it would 

still fill and drain the pipeline every iteration

shift_reg[3] = shift_reg[2];
shift_reg[2] = shift_reg[1];
shift_reg[1] = shift_reg[0];
shift_reg[0] = x;

acc = shift_reg[3] * c[3];
acc += shift_reg[2] * c[2];
acc += shift_reg[1] * c[1];
acc += shift_reg[0] * c[0];

y = acc;
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Pipelining

• Perfect pipelining cannot be achieved easily by rewriting the code
• We need to schedule differently the operations within a loop so that 

operations of different iterations take place simultaneously
• Remember “software pipelining”? Now we need it so that a software 

program represents a hardware pipeline
• HLS needs to implement some form of modulo scheduling
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Pipelining Result

• One output sample produced every 4 cycles and minimal resources

shift_reg[3] = shift_reg[2];
shift_reg[2] = shift_reg[1];
shift_reg[1] = shift_reg[0];
shift_reg[0] = x;

acc = 0;
for (i = 3; i >= 0; i--) {

#pragma HLS pipeline
acc += shift_reg[i] * c[i];

}
y = acc;
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Loop Restructuring as with VLIWs

multiplication add

multiplication add

multiplication addInitiation Interval = 5

element i

add

multiplication

add

multiplication

add

multiplication
Initiation

Interval = 1

element i – 4

element i

multiplication add

multiplication add

multiplication add

multiplication add

multiplication add

multiplication add

multiplication add

multiplication add

=
element i – 4

element i
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Classic HLS and VLIW Compilation

• Striking resemblance of the two undertakings
– Both try to produce a static schedule of operations
– Both try to reduce to a minimum control decisions

• Both suffer from similar limitations: they cope poorly with variability including 
variable latency operations, uncertain events—such as memory dependencies, 
unpredictable control flow (see part 3)

• Both impose burdens onto the user: decisions on how and where to apply 
optimizations are not self-evident, depend on the particular combination of user 
constraints (note that the solution space is much wider for HLS), and thus are often 
left to users through code restructuring or pragmas (see HLS lab)
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Extent of 
Programming Language Support

• Complete support for C/C++? Not quite:
– No dynamic memory allocation (no malloc(), etc.)

• Research work on providing such primitives for FPGA accelerators in high-end systems, for 
instance

– No recursion
– Limited use of pointers-to-pointers
– No system calls (no printf(), etc.)
– Other limitations related to the ability to determine critical details (e.g., function 

interfaces) at compile time

• Details vary from HLS tool to HLS tool
– Perhaps similarly to the early days of logic synthesis (which part of VHDL is 

supported and with what exact meaning?)
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Where Has Programmability Gone?
• FPGAs are an (increasingly?) important “programmable” technology in the hardware ↔ software 

spectrum
• Early binding time gives performance and/or cost advantages
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Faster and Smaller

“Hardware”

Custom
VLSI

First
Mask

Gate
Array

Metal
Masks

One-Time
Programmable

Fuse
Program

FPGA

Load
Config

Processors

Every
Cycle

Later Binding Time

“Software”

Fabrication Time

Physical
Media:

Binding
Time:
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3
Dynamically Scheduled High-Level Synthesis

(with Lana Josipović)
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High-level Synthesis and Static Scheduling

• High-level synthesis (HLS) may be the future of reconfigurable computing
– Design circuits from high-level programming languages

• As seen in Part 2, classic HLS relies on static schedules 
– Each operation executes at a cycle fixed at synthesis time

• Scheduling dictated by compile-time information
– Maximum parallelism in regular applications
– Limited parallelism when information unavailable at compile time

(i.e., latency, memory or control dependencies)
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What traditional HLS does not do well

Synthesis of dataflow circuits

Buffers and performance

The problem with memory

Conquering new grounds with speculation
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• Dynamic scheduling
– Maximum parallelism: Only serialize memory accesses on actual dependencies

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

1: x[0]=5 → ld hist[5]; st hist[5]; 
2: x[1]=4 → ld hist[4]; st hist[4]; 
3: x[2]=4 → ld hist[4]; st hist[4];

RAW dependency
• Static scheduling (standard HLS tool)

– Inferior when memory accesses cannot be disambiguated at compile time

The Limitations of Static Scheduling 
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Computer
Architecture

Statically Scheduled
 “Compiler does the job”

Dynamically Scheduled
 “Hardware does the job”

VLIW
Processors

Out-of-Order
Superscalar
Processors

Catastrophic for general purpose
(out-of-the-box compilation 

fails to deliver high performance)

Great for some embedded applications
(expert developers, heavy manual code 

refactoring and optimizations, etc.)

Statically vs. Dynamically Scheduled
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Computer
Architecture

High-Level
Synthesis ???

Statically Scheduled
 “Compiler does the job”

Dynamically Scheduled
 “Hardware does the job”

VLIW
Processors

Out-of-Order
Superscalar
Processors

Traditional HLS

Statically vs. Dynamically Scheduled
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Part 3 Outline

What traditional HLS does not do well

Synthesis of dataflow circuits

Buffers and performance

The problem with memory

Conquering new grounds with speculation
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• Refrain from triggering the operations through a centralized pre-planned controller
• Make scheduling decisions at runtime: as soon as all conditions for execution are

satisfied, an operation starts

A Different Way to Do HLS
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• Asynchronous circuits: operators triggered when inputs are available
– Budiu et al. Dataflow: A complement to superscalar. ISPASS’05.

• Dataflow, latency-insensitive, elastic: the synchronous version of it
– Cortadella et al. Synthesis of synchronous elastic architectures. DAC’06.
– Carloni et al. Theory of latency-insensitive design. TCAD’01.
– Jacobson et al. Synchronous interlocked pipelines. ASYNC’02.
– Vijayaraghavan et al. Bounded dataflow networks and latency-insensitive circuits. MEMOCODE’09.

How to create dataflow circuits from 
high-level programs?

A Different Way to Do HLS
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Component 1 Component 2

data

valid

ready

• Example using the SELF (Synchronous ELastic Flow) protocol 
– Cortadella et al. Synthesis of synchronous elastic architectures. DAC’06.

• Every component communicates via a pair of handshake signals
• The data is propagated from component to component as soon as memory and 

control dependencies are resolved

Dataflow Circuits
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+ −

> =

Functional units

Memory 
subsystem

Load 
ports

Store 
ports data

address

data
address

data
address

data
addressLD 

LD 

ST 

ST 

Memory interface

Buff

Buffer

FIFO

FIFO

Dataflow Components
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Fork

Fork

Join

Branch Merge

Merge

Join

Branch

Dataflow Components
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JoinFork

Fork

Branch Merge

Merge

Join

Branch

Dataflow Components
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Branch

Fork

Fork

Join

Merge

Merge

Join

Branch

Dataflow Components
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Merge

Fork

Fork

Join

Branch

Merge

Join

Branch

Dataflow Components
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Dataflow Components

• Although inspired by asynchronous circuits, elastic circuits are strictly synchronous and
perfectly adapted to traditional VLSI and FPGA flows

Eager ForkJoin
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• C to intermediate graph representation
– LLVM compiler framework

Basic 
block

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

Synthesizing Dataflow Circuits
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• Constructing the datapath

i

LD x[i] +

1

<

N
LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+
4 stages

comb.

Synthesizing Dataflow Circuits

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

Each operator corresponds to 
a functional unit
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• Implementing control flow

LD x[i]

Mg

+

1

Start: i=0

<

N
LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+
4 stages

comb.

Synthesizing Dataflow Circuits

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

A Merge for each variable 
entering the BB
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LD x[i]

Mg

+

1

Br

<

N
LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

4 stages

comb.

Synthesizing Dataflow Circuits
• Implementing control flow

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

A Branch for each variable 
exiting the BB
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• Inserting Forks

LD x[i]

Mg

Fork

+

1

Start: i=0

Fork

Br

<

N
LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

4 stages

comb.

Synthesizing Dataflow Circuits

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

A Fork after every node with 
multiple successors
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Part 3 Outline

What traditional HLS does not do well

Synthesis of dataflow circuits

Buffers and performance

The problem with memory

Conquering new grounds with speculation
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• Buffers and circuit functionality

LD hist[x] LD weight[i]

+

Buff

Adding Buffers

Buffer insertion does not 
affect circuit functionality
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• Buffers and circuit functionality

• Buffers and avoiding deadlock

LD hist[x] LD weight[i]

+

Buff

+

1

Br

Buff

Mg

Adding Buffers

Buffer insertion does not 
affect circuit functionality

Each combinational loop in 
the circuit needs to contain at 

least one buffer
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LD x[i]

Mg

Fork

+

1

Start: i=0

Fork

Br

<

N
LD hist[x[i]]

LD weight[i]

St hist[x[i]]

+

Exit: i=N

Fork

4 stages

comb.

Adding Buffers
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Two
combinational

loops

LD x[i]

Mg

Fork

+

1

Start: i=0

Fork

Br

<

N
LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

4 stages

comb.

Adding Buffers
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LD x[i]

Mg

Buff

Fork

+

1

Start: i=0

Fork

Br

<

N
LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Adding Buffers
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Adding Buffers

Backpressure from slow paths prevents pipelining
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LD x[i]

Mg

Buff

Fork

+

1

Start: i=0

Fork

Br

<

N
LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Optimizing Performance
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LD x[i]

Mg

Buff

Fork

+

1

Start: i=0

Fork

Br

<

N
LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb. Insert FIFOs into slow paths

Optimizing Performance

FIFO

FIFO
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LD x[i]

Mg

Buff

Fork

+

1

Start: i=0

Fork

Br

<

N
LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

4 stages

comb.

BEFORE
(without FIFOs)

Optimizing Performance

LD x[i]

Mg

Buff

Fork

+

1

Start: i=0

Fork

Br

<

N
LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.
FIFO

FIFO
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LD x[i]

Mg

Buff

Fork

+

1

Start: i=0

Fork

Br

<

N
LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

4 stages

comb.

BEFORE
(without FIFOs)

Optimizing Performance

LD x[i]

Mg

Buff

Fork

+

1

Start: i=0

Fork

Br

<

N
LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.
FIFO

FIFO

NOW
(with FIFOs)
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Optimizing Performance
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RAW dependency
not honored!

Optimizing Performance

What about memory?
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Part 3 Outline

What traditional HLS does not do well

Synthesis of dataflow circuits

Buffers and performance

The problem with memory

Conquering new grounds with speculation



9
6

• Traditional processor LSQs allocate memory instructions in program order

loop: lw $t1, 0($t0) 
lw $t2, 0($t1) 
mul $t2, $t2, $t3 
sw $t2, 0($t0)
addi $t1, $t1, 4 
bne $t5, $t1, loop

We Need a Load-Store Queue (LSQ)!
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• Traditional processor LSQs allocate memory instructions in program order

• Dataflow circuits have no notion of program order

loop: lw $t1, 0($t0) 
lw $t2, 0($t1) 
mul $t2, $t2, $t3 
sw $t2, 0($t0)
addi $t1, $t1, 4 
bne $t5, $t1, loop

We Need a Load-Store Queue (LSQ)!

How to supply program 
order to the LSQ?
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• An LSQ for dataflow circuits whose only difference is in the allocation policy:
– Static knowledge of memory accesses program order inside each basic block
– Dynamic knowledge of the sequence of basic blocks from the dataflow circuit

LD x
LD weight

LD hist
ST hist

BB1 is starting
LSQ

Memory

BB1: LD, ST

LD hist
ST hist

LD hist
ST hist

Basic Idea
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Dataflow Circuit with the LSQ

High-throughput pipeline with 
memory dependencies honored
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• Resource utilization and execution time of the dataflow designs, normalized to
the corresponding static designs produced by Vivado HLS.

Experimental Results
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Part 3 Outline

What traditional HLS does not do well

Synthesis of dataflow circuits

Buffers and performance

The problem with memory

Conquering new grounds with speculation



1
0
2

1: a[0]=50.0; b[0]=30.0 
2: a[1]=40.0; b[1]=40.0
3: a[2]=50.0; b[2]=60.0 → exit

float d=0.0; x=100.0; int i=0; 

do {
d = a[i] + b[i];
i++;

}
while (d<x);

Nonspeculative vs. Speculative System



1
0
3

1: a[0]=50.0; b[0]=30.0 
2: a[1]=40.0; b[1]=40.0
3: a[2]=50.0; b[2]=60.0 → exit

float d=0.0; x=100.0; int i=0; 

do {
d = a[i] + b[i];
i++;

}
while (d<x);

Nonspeculative vs. Speculative System
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float d=0.0; x=100.0; int i=0; 

do {
d = a[i] + b[i];
i++;

}
while (d<x);

<

Buff

Load a[i] Load b[i]

+

+

Fork

Start, i=0

End

d

3 stages
comb.

Merge

Branch comb.

1 i

x

Nonspeculative Dataflow Circuit
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<

Buff

Load a[i] Load b[i]

+

+

Fork

Start, i=0

End

d

3 stages
comb.

Merge

Branch comb.

1 i

x

float d=0.0; x=100.0; int i=0; 

do {
d = a[i] + b[i];
i++;

}
while (d<x);

Nonspeculative Dataflow Circuit



1
0
6

Nonspeculative Dataflow Circuit

Long control flow decision 
prevents pipelining
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MergeMerge

Load

Exit
Store

Store

...

Branch

Speculator

++

Fork

+

...

• Contain speculation in a region of the circuit delimited by special 
components
– Issue speculative tokens (pieces of data which might or might not be correct)
– Squash and replay in case of misspeculation

Speculation in Dataflow Circuits

data + handshake
speculative tag
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MergeMerge

Load

Exit
Store

Store

...

Branch

Commit

Commit

Speculator

++

Fork

+

...
Commit

Speculation in Dataflow Circuits
• Contain speculation in a region of the circuit delimited by special 

components
– Issue speculative tokens (pieces of data which might or might not be correct)
– Squash and replay in case of misspeculation

data + handshake
speculative tag
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MergeMerge

Load

Exit
Store

Store

...

Branch

Commit
Commit

Commit

Save

Save

Save

...

Speculator

++

Fork

+

Speculation in Dataflow Circuits
• Contain speculation in a region of the circuit delimited by special 

components
– Issue speculative tokens (pieces of data which might or might not be correct)
– Squash and replay in case of misspeculation

data + handshake
speculative tag
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MergeMerge

Load

Exit
Store

Store

...

Branch

Commit
Commit

Commit

Save

Save

Save

...

Speculator

++

Fork

+

Speculation in Dataflow Circuits
• Contain speculation in a region of the circuit delimited by special 

components
– Issue speculative tokens (pieces of data which might or might not be correct)
– Squash and replay in case of misspeculation

data + handshake
speculative tag
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MergeMerge

Load

Exit
Store

Store

...

Branch

Commit
Commit

Commit

Save

Save

Save

...

Speculator

++

Fork

+

Speculation in Dataflow Circuits
• Contain speculation in a region of the circuit delimited by special 

components
– Issue speculative tokens (pieces of data which might or might not be correct)
– Squash and replay in case of misspeculation

data + handshake
speculative tag
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Spec.
Branch

• Speculator
– Dataflow component which can, besides its standard functionality, also inject

tokens before receiving any at its input(s)
– Branch Speculator, LSQ

Spec. 
LSQdata

address

data

addressLoad

Store

Components for Speculation
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Spec.
Branch

Components for Speculation
• Speculator

– Dataflow component which can, besides its standard functionality, also inject
tokens before receiving any at its input(s)

– Branch Speculator, LSQ
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Spec.
Branch

Save Save a copy of all regular 
tokens which may become 

speculative

• Save units
– Input boundary of the speculative region
– Reissues when previous computation is squashed

Components for Speculation

Save a copy of all regular tokens 
which may become speculative
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Spec.
Branch

Save

Buff

Fork

Merge
sink

Branch
resend/

drop

Components for Speculation
• Save units

– Input boundary of the speculative region
– Reissues when previous computation is squashed
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Spec.
Branch

Commit

Store

Save

• Commit units
– Output boundary of the speculative region
– Propagate speculative tokens that turn out to be correct, squash misspeculated data

Components for Speculation

Propagate further speculative results 
which turn out to be correct
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Spec.
Branch

Commit

Store

Save

sink

Branch
pass

discard/
pass

Components for Speculation
• Commit units

– Output boundary of the speculative region
– Propagate speculative tokens that turn out to be correct, squash misspeculated data
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• Save units
– On each path to any component that could combine the token with a speculative
– As close as possible to the paths carrying speculative tokens

MergeMerge

Load

Exit
Store

Store

...

Branch

Commit
Commit

Commit

+

SpeculatorSave

Save

Save

... +

Fork

+

Placing the Components for Speculation
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MergeMerge

Load

Exit
Store

Store

...

Branch

Commit
Commit

Commit

+

SpeculatorSave

Save

Save

... +

Fork

+

Placing the Components for Speculation
• Save units

– On each path to any component that could combine the token with a speculative
– As close as possible to the paths carrying speculative tokens
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Save

Save

Save

• Commit units
– On each path from the Speculator to an exit point, a store unit, or the Speculator
– As far as possible from the Speculator

MergeMerge

Load ... Speculator

... +

Exit
Store

Store

Branch

Commit

Commit

++

Fork

Commit

Placing the Components for Speculation
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Save

Save

Save
MergeMerge

Load ... Speculator

... +

Exit
Store

Store

Branch

Commit

Commit

++

Fork

Commit

Placing the Components for Speculation
• Commit units

– On each path from the Speculator to an exit point, a store unit, or the Speculator
– As far as possible from the Speculator
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• Extending dataflow components with a speculative tag 
– An additional bit propagated with the data or OR’ed from all inputs

data + handshake
speculative tag

+BuffFork

Speculative Tag
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Branch

Buff

Load a[i] Load b[i]

+

Fork

Start, i=0

End

d

Merge

<

+

1 i

x

Speculative Dataflow Circuit
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Speculator instead of 
regular branch

Buff

Load a[i] Load b[i]

+

Fork

Start, i=0

End

d

Spec.
Branch

Merge

<

+
Speculator instead of 

regular Branch

1 i

x

Speculative Dataflow Circuit
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Input boundary: save units

Buff

Load a[i] Load b[i]

+

Fork

Start, i=0

End

d

Spec.
Branch

Merge

Save

<

+
Input boundary: 

Save units

1 i

x

Speculative Dataflow Circuit
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Buff

Load a[i] Load b[i]

+

Start, i=0

End

d

Spec.
Branch

Commit

Output boundary: commit 
units

Merge

Save

<

+

Fork

Output boundary: 
Commit units

1 i

x

Speculative Dataflow Circuit
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Buff

Load a[i] Load b[i]

+

Start, i=0

End

d

Spec.
Branch

Commit

Merge

Save

Commit

<

+

Fork

Output boundary: 
Commit units

1 i

x

Speculative Dataflow Circuit
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i

Commit

Buff

Load a[i] Load b[i]

+

Fork

Start, i=0

End

d

Spec.
Branch

Save

Commit

Merge

<

+

1

x

Speculative Dataflow Circuit
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Single speculation at a time cannot 
achieve maximum parallelism

Single speculation at a time 
cannot achieve maximum parallelism

Speculative Dataflow Circuit
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• Merging the Save and Commit unit on cyclic paths
Commit unit:
• Stalls speculative tokens
• Discards misspeculated tokens

Save unit:
• Saves and reissues tokens

Increasing Performance
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Commit unit:
• Stalls speculative tokens
• Discards misspeculated tokens

Save unit:
• Saves and reissues tokens

Save-Commit unit:
• Lets speculative tokens pass
• Discards misspeculated tokens
• Saves and reissues tokens

Increasing Performance
• Merging the Save and Commit unit on cyclic paths
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Commit unit:
• Stalls speculative tokens
• Discards misspeculated tokens

Save unit:
• Saves and reissues tokens

Save-Commit unit:
• Lets speculative tokens pass
• Discards misspeculated tokens
• Saves and reissues tokens

Increasing Performance
• Merging the Save and Commit unit on cyclic paths
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Commit unit:
• Stalls speculative tokens
• Discards misspeculated tokens

Save unit:
• Saves and reissues tokens

Save-Commit unit:
• Lets speculative tokens pass
• Discards misspeculated tokens
• Saves and reissues tokens

Increasing Performance
• Merging the Save and Commit unit on cyclic paths
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Commit unit:
• Stalls speculative tokens
• Discards misspeculated tokens

Save unit:
• Saves and reissues tokens

Save-Commit unit:
• Lets speculative tokens pass
• Discards misspeculated tokens
• Saves and reissues tokens

Increasing Performance
• Merging the Save and Commit unit on cyclic paths
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Commit unit:
• Stalls speculative tokens
• Discards misspeculated tokens

Save unit:
• Saves and reissues tokens

Save-Commit unit:
• Lets speculative tokens pass
• Discards misspeculated tokens
• Saves and reissues tokens

Increasing Performance
• Merging the Save and Commit unit on cyclic paths
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Increasing Performance
• Merging the Save and Commit unit on cyclic paths
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Increasing Performance
• Merging the Save and Commit unit on cyclic paths
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Increasing Performance
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Results
• Timing and resources: traditional HLS (Static) and dataflow circuits with 

speculation (Speculative)
– Cases where dynamic scheduling on its own cannot achieve high parallelism 1

1 Press et al. Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, 3rd edition.
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Part 3 Outline

What traditional HLS does not do well

Synthesis of dataflow circuits

Buffers and performance

The problem with memory

Conquering new grounds with speculation
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What to Expect from Dynamic HLS?

• Two hopes derived from the VLIW vs. OoO analogy:
– Significantly better performance in control dominated applications with poorly predictable memory 

accesses
– Better out-of-the-box performance

• The former is almost certain, the second less so
• A major issue is the hardware overhead of supporting dynamic schedules

– Probably tolerable for the bulk of the circuits 
– Yet, LSQs represent quite tangible overheads, esp. in FPGAs (but could be hardened there)

• Probably statically-scheduled HLS remains the best choice for classic DSP-like 
applications
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Conclusions 
on Processor Customization and HLS

• Customizable processors and high-level synthesis are promising techniques to 
accelerate program execution through customized hardware

• We may need more of this in a post-Moore (no transistor scaling) and post-Dennard 
(no power scaling) world

• Yet, all these techniques require considerable manual work and expertise (at least to 
obtain decent results)

• Current research tries both to improve the quality of HLS-generated circuits as well as 
moving further up the level of abstraction to extract more easily more parallelism 
(e.g., domain-specific languages)
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