Advanced
Computer Architecture

Part Il: Embedded Computing
From Processor Customization to HLS

Paolo lenne

<paolo.ienne@epfl.ch>

Four Generations of Alpha

Normalisation to

(o0]
o
o
N
LLl
Ll
Ll
0.10 um ©
12V S
2.1 GHz cp
S
based on EVG real data @)
EVS8- =
=
-
(D)
©
e
3
4
Q
EV6 o
- |
3
Eval | EVS
287 mm? 5.06 mm? 24.5 mm? 236 mm °
373 W 6.88W 10.68 W 46.44 W

Issue 2 Issue 4 Issue 8 (O00) Issue 8 (O00)

Cost of Additional Performance

2

e Very roughly (at constant
technology):

— 80x area
— 12x power

g
M

— 2-3x performance

e Pervasive mobile
applications cannot
afford such costs:

EV8-

IPS (in millions}

]m
F

EV6

- | EV5
— Volume products are still o+ |

sensitive to area

Source: Kumar et al.,, MICRO-36, © IEEE 2003

— Energy is at a premium!

20 401 601 801
Commiitted instructions (in millions)

without paying the price?!

[Can we get the performance J

Reminder of
Embedded Processors Specificities

* Cost used to be the only concern; now performance/cost is at
premium and still not performance alone as in PCs (Intel model);
performance is often a constraint

* Binary compatibility is less of an issue for embedded systems

e Systems-on-Chip make processor volume irrelevant (moderate
motivation toward single processor for all products)

Increasing the

Efficiency of Implementations

(

.

From C programs to more efficient
“programmable” solutions

\

Automatic Processor Customization

1.

ISA configuration and extension from applications
* The “fourth generation HLS” ?! (see Martin & Smith, IEEE DTC 2009)

High-Level Synthesis
Statically scheduled HLS

2.

3.

* The “VLIW” way...

* Taming DSP and multimedia applications

Dynamically scheduled HLS
* Conquering prediction and speculation

* A better match to control-dominated irregular applications?

Automatic Processor Customization

Tensilica Xtensa

. Processor Controls
Instruction Fetch / Decode _

A simple RISC
basic architecture with Designer-Defined FLIX Base ISA |
. ona Parallel E i 3 i nterrupts,
some customizability Pi,;’.?,,js_’-‘-:,‘?-“ﬂ;}ﬂe Pipaline

/

Register File

Base ALU

.

Local
Instruction
Memories

Processor
External Bus ~— |nterface (PIF)
Interface
to System Bus

;

Several optional
customizable
predefined _ _
Designer-Defined

bIOCkS Queues / Ports
up to 1M Pins

Designer-Defined
Execution Unit

Local Data
Memories

Designer-Defined Execution Units,
Register Files and Interfaces
Designer-Defined Execution Units,
Register Files and Interfaces

. Base ISA Feature

Xtensa

Data
Load/Store
Unit

. Configurable Functions

Local Memory
Interface

Optional Function

. Optional & Configurable
. Designer-Defined Features (TIE)

Prepared interfaces for user-defined customizations

© Tensilica 2006

ARC 625D
Configuration Possibilities

Processor:
— Register file type and size
— Number of interrupts and pins
— Reset state
— Endianness
Cache:
— Cache type: Instruction and/or Data
— Size: 2k - 32k Bytes
— Ways: 1-4

DSP Functions:
— 24x24 MAC
— Dual 16x16 MAC
— 32x16 MAC
— Extended Arithmetic Package
— Dual Viterbi Butterfly

— CRC Acceleration
— Audio Acceleration Package

— XY Memory 1-2 Banks, 1k - 32k bytes,
single or dual ported

— Line Length: 16 - 128 bytes
Closely Coupled Memory: _

— Instruction RAM: 1k - 512k bytes — Timers

— Data RAM: 2k - 32k bytes * Bus Components:

* Peripherals:

Instructions: — BVCI Arbiter
— NORM - find the first "0" in a 32 bit — AMBA AHB
word Debug:
— SWAP - switch locations of the top — JTAG interface
and bottom 16 bit fields _ Actionpoints

— MULT32 - fast 32 x 32 bit multiplier

Benefits of Customization

Customization

Area and power efficiency quickly raises the
same architecture
and breaks
out of the pack
® At Speed: 454 MHz in 90nm = 1*)1.5 m XtensalX optimized I
2 Power = millnwatts
(] 45 \ OFreascale 4TT48
% 4_1‘,"‘ \ BPPCA40GK
Ytensa LxX OOB
W35t \ i N
% 3} \ OMIPS 20Ke
E 254 5 l @ ARMI0ZEEJ-S
f, z‘f At Speed: 1.4 GH: PowerPC= 1T33.8 Out-of-the-Box
£ 151" E i Locu2c tppreximanly 30 Wars Xtensa LX is
E 1471 o Xiansa AT in the pack
=05+ x xBTS ArM with other
& g processors

Beware: This is a marketing slide...

© Tensilica 2006

Mainstream ASIC/FPGA Processors and
Specialisation?
All the recent embedded ASIC/FPGA processors offer some sort of
specialisation:

* Parametric resources (STM Lx/ST200, ARC Cores, Tensilica Xtensa, Altera
Nios, etc.)

 Arbitrary functional units or tightly coupled coprocessors (STM Lx/ST200,
IFX Carmel 20xx, ARM, Tensilica Xtensa, Altera Nios, MIPS CorExtend, etc.)

But all assume an onerous
manual study and design!

Tensilica Xpres
Automatic Configuration Tool

pd-+ Benchmark - main.c - Xtensa Xplorer

File Edit MNavigate Search Project Bun Mindow Help
|- B R & B ke, 2% cva-|B ¢ ¥
%h [= Comparison B % i E v X
% Application Performance /| Hardware Cost Tradeoff
= Fn,uuu~\ S
Wi 65,000 \ 8
60,000 \ Set of Pareto ©
o oints =
i 50,000 2
:g 45,000 lﬂ_)
o 40,000
= 35,000 ©
% 30,000 -
S 25,000
[
20,000 -
15,000 -
10,000 - B
| O O S S SO e o8 £ L L
o 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000
Estimated Area (gates)

Interesting CS problems to explore the design space efficiently!

Compilers as Design Tools

Standard
Processor
Traditional Application Compiler Simulator
System Description
(caches, buses...) ‘
. : Configurable
i i Appl
Simulation based pplication Compiler Simulator Report
Processor & System Description |(‘
Compiler- Application Retargetable Retargetable Report
in-the-Loop Compiler Simulator

EDA Meets Computer Architecture

* Tensilica (founded 1997) has been bought by Cadence in 2013

* ARC International (founded in the early 1990s) has been bought by Virage
Logic in 2009 and Virage Logic has been acquired by Synopsys in 2010

e Little known progress in automating the customization process, though...

* A “safe” technique for extensive customization

e Available in many commercial processors (from MIPS, STM, IFX, Tensilica,

User Designed Customizations?
Instruction Set Extensions

Microprocessor

EXECUTE =
2

ARC, Xilinx, Altera,...)

Instruction Set Extensions (ISE)

IN1 IN2 IN3

* Collapse a subset of the Direct Acyclic
Graph nodes into a single Functional
Unit (AFU)

— Exploit cheaply the parallelism within the
basic block

— Simplify operations with constant
operands

— Optimise sequences of instructions (logic,
arithmetic, etc.)

— Exploit limited precision

AFU

out1 = F(in1, in2, in3, in4, in3)
out2 = G{in1, in2, in3, in4, in3)
out3 = H(in1, in2, in3, in4, in5)

Elementary Motivational Example
An Important Kernel...

/* init */

a <<= 8;
/* loop */
for (i = 0; i < 8; i++) {
if (a & 0x8000) ({)
a=(a<<1) +b: Shift-and-add
} else { unsigned
a <<= 1; 8 X 8'b|t
)) multiplication

}
return a & Oxffff;

Software Predication

/* init */

a <<= 8;
/* loop */
for (i = 0; i < 8; i++) {
pl = - ((a & 0x8000) >> 15);

a=(a<<1l) +b & pl;
A
}
return a Oxffff;

Predicate mask
(0 or —1 = Oxfffffff)

Shift Predicated
Add

Loop Kernel DAG

b

In SW

In HW

> Only wiring

1-2
) cycles!

} AND gates
} ALU

New Unit To Accelerate
Shift-and-Add Multiplication Loop

Register File

ALU LD/ST MSTEP

if (Rn[31]==1)
then Rn &< (Rn<< 1) + Rm
else Rn &« (Rn<< 1)

One instruction added
->
loop kernel reduced
to 15-30%

Loop Unrolling

/* init */

a <<= 8;

/* no loop anymore */

pl = - ((a & 0x8000) >> 15); a = (a << 1) + b & pl;
pl = - ((a & 0x8000) >> 15); a (a << 1) + b & pl;
pl = - ((a & 0x8000) >> 15); a (a <<1) + b & pl;
pl = - ((a & 0x8000) >> 15); a (a << 1) + b & pl;
pl = - ((a & 0x8000) >> 15); a (a <<1) + b & pl;
pl = - ((a & 0x8000) >> 15); a (a << 1) + b & pl;
pl = - ((a & 0x8000) >> 15); a (a << 1) + b & pl;
pl = - ((a & 0x8000) >> 15); a = (a << 1) + b & pl;

return a & Oxffff;

Full DAG

In SW L In HW
a b
. \ / \
9 &-network 2
S. w
U VVVVVVVYVYYVYYVYY 1
=
2 < Column Compr. }2
z \ A 4 Q
("]
+ ()]
1 y
e ": a
\ Arithmetic
Optimiser

New Unit To Accelerate
Multiplication?! Yeah, a MUL...

Register File

ALU LD/ST MUL

\

R < (Rn & 0x0000.ffff) x (Rm & 0x0000.ffff)

One instruction added
->
function reduced by a
factor 10-15

Classic “Specialisation”...

Architecture Hardware Configurstion | Software Configuration | Custom Instruu:tiu:unsl

Pre=et Configurations: |Custu:um ;l
— Register Options
Regizter File Size IESE vI |_ Wiriteakle Wi ALID

ineline Optimization

Pre Stalls ! Fewer LEs { Fewver Stalls £ More LE=

© Altera 2003

[Support RLCRRC

Instruction Decoder Implemented Az
{+ ESB= (COn-chip memary resources)

|7 Support interrupts and traps
{ LEs (Logic resources)

(il ~1480LEs, ~4 ESBs

Cancel = Prew kext = | Finizh |

Why Hardware Is Better?

e Spatial computation
— Cheap “ILP” without true ILP support

* No quantization of time in clock cycles for each operation/instruction

— Operation chaining

* Hardware is different
— Constants may be propagated
— Precision can be tuned (bitwidth analysis)
— Arithmetic components can be optimized

Spatial Computation

Spatial Computing Temporal Computing
1 B :
+ | R1: A =

V V :

\ X / x)d Eg CB: MUL R4 R4 R5 Zf)
A C : MUL R4 R2 R6 S
| | R4: X ADD R3 R6 R6 Q
V V R5: tmp MUL R1 R5 R5 o)
\ X / + / RG:Y MUL R5 R6 R6 %
\V4 O
\ ¥ / \ ALU <t
-<OE

No Time Quantization

Effective occupation of the execute stage

2 o T
= <)
2 2% 5 5
= Lltn| =

ADD

MUL

Constants
Example

/* an excerpt from adpcm.c */
/* adpcmdecoder, mediabench */

vpdiff = step>>3;
if (delta & 4) vpdiff += step;

if (delta & 2) vpdiff += step>>1;
if (delta & 1) vpdiff += step>>2;

- Exploited to reduce
complexity—e.q.,

a*5 =2 a<<2+a

 Hardcoded into logic

] Bitwise operations
(e.g., on delta, step)

reduce to wires

Bitwidth Analysis

Example

/* an excerpt from adpcm.c */
/* adpcmencoder, mediabench */

index = indexTable[delta];

if (index < 0) index = 0;
if (index > 88) index 88;

step = stepsizeTable[index];

10 < index < 88

17 bits sufficient for
representation

J Faster arithmetic
components, etc.

Arithmetic Optimizations

Arithmetic operations often appear in groups (dataflow graphs)
A literal/sequential implementation may not make the best of the potential available

A different number representation can be a game-changer
— May bring large advantages, often without higher hardware cost
— Big O complexity O() may change with a different representation!
— E.g., carry-save adders, column compressors, etc.

Typical example: MAC
— Only marginally slower than corresponding MUL
— Practically same complexity

Why Hardware Is Better?

IN1 IN2 INZ
|

R

AND AND
| “'::I

Exploit constant for logic
simplification

Some operations reduce to
wires in hardware

Exploit data parallelism in
hardware

Exploit arithmetic properties
for efficient chaining of
arithmetic operations (e.g.,
carry save)

Gain Potentials in Ad-hoc FUs:
Tangible Cycle Savings Possible

DVIN/TNIN~ Yied |ediiu)

<

} No hardware needed

} No hardware needed

@ @ @ Similar to MUL but less
_ . .
additive terms
One more additive term in
carry-save/Wallace tree

One more additive term in
carry-save/Wallace tree
(as in MAC)

Automatic ISE Discovery

[step |

) Formulate it as an

optimization problem

Find subgraphs

1. having a user-defined maximum number
of inputs and outputs,

2. convex,

possibly including disconnected
components, and

4. that maximise the overall speedup

Automatic ISE Discovery

E Q’ Eclipse File Edit Navigate Search Project JNINGRGEIES Run Window Help < T =] 4) Tue 14
'6 06 J 3 Run All j@n/Projects/Applications - Eclipse Platform
] e] Omte B ®] $or Q- Q-] & } * i) Profile Application £ Bcice+ »
b1 Nof A
T Navigator 5~ =5\ desc R a3 Generate AFUs 5[DFC 9] sasic & =5
T 7 @, Commit Selection
e | B3 - . = ’ 1]
R T * des.{cc,hh} -- element| [E] Save AFUs sing DES
past * Alex Snoeren, Benjie C
P (= Debug * contains code from oth S Iod Al
[€] des.c by
@des.h * Copyright (c) 1999-2008 Massachusetts Institute of Technology
@ main.c 2

.

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software ond associated documentation files {(the "Software"},
to deal in the Software without restriction, subject to the conditions
listed in the Click LICENSE file. These conditions include: you must
preserve this copyright notice, and you cannot mention the copyright
holders in advertising related to the Softwore without their permission,

* The Software is provided WLTHOUT ANY WARRANTY, EXPRESS OR IMPLIED. This

* notice is a summary of the Click LICENSE file; the license in that file is
* legally bindi
.

.

-

#include "des.h"

/%

Copyright (C) 1992 Eric Young - see COPYING for more details */
/* Callected and modified by Werner Almesberger */

© Mimosys 2006

Ox3f
#define _ ks._
#define ITERATIONS 16 ‘:
#daFina 200 1N £l £ fimedanad Tana W ROF o000 . X
Problems = 0| & CFG View : des_encrypt £ ==
X *
Name | Inputs Outputs | % c_\r(le;_;avcd | SW latency | HW Latency | Al (1] Conditional
AFUO) r 2 3.2757% 38.0 1535
B = s 4 1 93.1756% 132.0 3.9592 CIEER (I
[] AFU(2) 2 1 3.2757% 38.0 1535 S
[4] Conditional
[ETEEE (6] Return (5] Basic
= = Talr
Total AFUs: 3 Performance: 99.727005 Area: 6.2145996

[| Writable | smartinsert [1:1

®) MiMOsYS

[image: image1.jpg]@ Eclipse File Edit Navigate Search Project EVIVIRETIEY Run Window Help

O 4 © = 4 Tueldls

006 © Run Al n/Projects/Applications - Eclipse Platform 2
F- o]0 Gt e B8 |35 0- Q- | ¥] 4_ 8 Profile Application 5 Bcrcer B
&= Navigator %\ ™ =) ([@desc® . I B1(® DFG: (9] Basic =8

. 2, Commit Selection
2 BS~| 2 IS)
—~ * des.{cc,hh} - clenent] [Save AFUS bsing DES
Sipsec + Alex Snoeren, Benjic O @ | 5ad AFUS
» (& Debug * contains code from ol
' —
[Bdesc o
Bdesh * Copyright (c) 1999-2000 Nassachusetts Institute of Technalogy
@maine * Permission is hereby granted, free of charge, to any person obtaining
* copy of this software and associated documentation files (the "Software")
* to deal. in the Software without restriction, subject to the conditions
* listed in the Click LICENSE file. These conditions include: you must
* preserve this copyright notice, and you cannot mention the copyricht
* holders in advertising related to the Software without their permissior
* The Software is provided HITHOUT ANY WARRANTY, EXPRESS OR IMPLIED. This

ense in that file

le; the 1i

notice is o summary of the Click LICENSE f
* legally binding

#include "des.h"

/* Copyright (C) 1992 Eric Young - ses COPYING for more details */
/* Collected and modified by Werner Almesberger */

#define _ ks._
#dafine ITERATIONS 16 vy
Problems | Console | Properties ([AFUVIEWES. = B)(® CFG View: des_encrypt =8
xR -
Name Inputs Outputs | %cycles saved | SW Latency. HW Latency {ij Conditional
ARUO) 2 2 3.2757% 380 1535
& A 5 1 93.1756% 1320 39592 e o ReeE
ARUG) 2 1 3.2757% 380 1535
(4) Conditional
{51 Basic
e ____] RIS
Total AFUS:3 Performance: 99.727005 Area: 6.2145996
[Twme [smorvmsen_ |31 :

R T T e o o T) R e T I —

16

14

12

[uny
o

Application Speedup
o)

Automatic ISE Discovery

Examples

/

ya
7

e
/

[—CH~CHHO

100

1000

10000 100000
Estimated Area (gates)

1000000

== des
== autocor

=>¢=adpcm_dec
oder
==gsm_decod

er
=@0=aes

==t==rgh_cmyk

© Mimosys 2007

Processor Customization?

* Arguably the most widespread method of designing embedded hardware: selecting
one of very many existing processors or configuring the parameters of a family of
processors amounts to customization for a set of applications

* Little automation, though: still mostly a manual design-space exploration; glimpses of
automation in the 2000s seem lost

e Automatic ISE discovery could be a more promising automatic customization
opportunity, but also disappeared in the late 2000s (the “fourth generation HLS” is
dead?)

— Pros: Focus on automatic design of datapath and leave control to manually optimized processors
(prediction, speculation, etc.)

— Cons: Limited scope of exploitable parallelism (datapath parallelism and convertible control—e.g.,
predication, unrolling)

Statically Scheduled High-Level Synthesis
(with Lana Josipovic)

Beyond Dataflow

e Somehow, ISE is confined to dataflow or convertible control flow, and this
limits exploitable parallelism

* Traditional HLS gets rid of the processor altogether and uses the C/C++
specification to build hardware

* It represents an attempt (started in the late ‘80s and early ’90s) to raise
the abstraction level of hardware design above the classic RTL level (i.e.,
synthesizable VHDL and Verilog)

A Bit of History

Generation 0 (1970s), prehistory
— Groundbreaking academic work
Generation 1 (1980s until early 1990s)
— Mostly important academic work; few commercial players
— Focus on scheduling, binding, etc.
— Almost competing in adoption with RTL logic synthesis
Generation 2 (mid 1990s until early 2000s)
— Main EDA players offer commercial HLS tools; commercial failure
— Assumed RTL designers would embrace the technology, but there was not enough gain for them
— Wrong programming languages (VHDL or new languages)
Generation 3 (from early 2000s)
— Currently available commercially (e.g., Vivado HLS); some successes
— Connected to the rise of FPGAs (fast turnaround, inexperienced designers, etc.)
— Focus on C/C++ and on demanding dataflow/DSP applications

Adapted from Martin & Smith, IEEE DTC 2009

— Better results (progress in compilers, including VLIW)

What Circuits
Do We Want HLS to Generate?

e Qutput of HLS is ill-defined

— An example could be to generate always the same hardware (the RTL of a software
processor) and binary code for it—hardly what we usually mean by HLS...

* The informal expectation is a circuit much more massively parallel than
what a classic software processor can achieve

Architectural Template

 We need to chose a template which we customize to and optimize for the code at
hand

e Usually something of this sort:

] -

Datapaths Memory and

Steering
o
Controller
----- = e

Outputs l

Scheduling the Datapath

e Assign operations to functional units respecting data dependencies and functional unit
latencies

ASAP, unconstrained ASAP, constraint: 1 mul
a bec d e f a bec d e f
N/ N/ N/ N\ / \N_/ '\ [\ / I
\“/ N /NN N7

* * * * %
AN/ / / \
N~/ \
£/ / \
\ \// | -
LS @ 1
Period N s
N/ |
+ H
i e
g

v Cycles

Same as VLIW Scheduling?

* Very similar problem but with some notable differences:

— Exact resources are not fixed; maybe there is a constraint on their total
cost (e.g., area)

— Clock cycle may be constrained but is in general not fixed; pipelining is
not fixed (e.g., combinational operations can be chained)

— No register file (which allows connecting everything to everything) but
ad-hoc connectivity (variable cost and variable time impact)

Area Optimizations

 There may be cheaper ways to achieve the best latency
 New problem without immediate analogy in VLIWSs

ASAP, unconstrained ASAP, constraint: 2 muls
a bc d e f a bc d e f
N/ N/ N/ N/ N/ NN N
\ "/ \ / \ / \ / \"7 \"7

* * * k * * \

\ / / / \ /

\ / N/ \"7 | -
/] (55
~. N ~ /

B/ M /
N/ N/

+ +
| |
I I
g g

Chaining and Pipelining

 Combinational operators can be chained and clock period can often be adjusted
(shortest not necessarily fastest)

e Also, a new problem without immediate analogy in VLIWSs

Before operation chaining After operation chaining
and with fast clock and with slower clock
a\ /b c d e 5
\ / / a b c e
N t \ /N)]
1.4 tI * * "1t
1 % % 1.4t
N/ . >
N/ N
0.6t] & / +
\\ / N
+ +
| |
g g

Total time: 4x1t=4t Total time: 2x1.4t=2.8t

Scheduling under
Resource Constraints

Main focus of research in the early days
The state of the art is based on the paper by Cong & Zhang, DAC 2006:

— Given
* A CDFG (i.e., a program)

* A set of constraints including dependency constraints, resource constraints, latency constraints,
cycle-time constraints, and relative timing constraints

— Construct a valid schedule with minimal latency

Used in recent tools such as Xilinx Vivado HLS
But... is this all we need?

Example: FIR

acc = 0;
for (i = 3; 1 >= 0; i--) { X
if (i == 0) { — Ok 4)

shift reg[0] = x;

X oo Xjg—3 3

acc += x * c[0];

} else { / Vi — E CiXpk—i
shift reg[i] = shift reg[i-1]; .
acc += shift reg[i] * c[i];

} ‘\\\\ - __ y,

l

}
y = acc;

\

Yk

 Thearray shift regis static and represents the last 4 samples of x

Example inspired from Kastner, Matai, and Neuendorffer

e This could be in a function which receives a stream of x (the input signal)
and produces at each call an element of y (the output signal)

A Literal Translation...

acc = 0;
for (i = 3; i > 0; i--) {
if (i == 0) {
shift reg[0] = x;
acc += x * c[0];
} else {
shift reg[i] = shift reg[i-1];
acc += shift reg[i] * c[i];

}

}
y = acc;

Cl

w

1 1

1 1

1 1

! I

1 1

1 1

-- S !

5 L :

If-convert control flow i o i
! ! acc

whenever possible | i E o0 L b2 B3 B |

Implement all existing registers ! P] t 1t 7 :

1 1 1 1

Implement d.atapa)th for all BBs i : i /——\ E

4. Create steering wires and : b i :

; I 7 ! i 0 I

muxes to connect everything i. L+) i E. i

Naive FIR

acc =

0 .

for (i ; 3; i > 0; i--) {
if (i == 0) {

shift reg[0] = x;

acc += x * c[0];
} else {

Controller

shift reg[i]

shift reg[i-1];
acc += shift reg[i] * c[i];
}
}
y = acc;
acc
CO C1 C2 C3 C4 C5 C6 C7 cC8 0©9 C101C11 C12 C13 C14 C15 C16 _
2he multiplication add
regs : : : . . ¢
1 : ‘ e multiplication
‘ | regs
2 : : : : : : :
Y

|Mdr

|rd/ wr| multiplication
| regs - - .

Manual Code Refactoring

* Direct results are very often highly suboptimal
— See FIR example

* Users should have a sense of what circuit they want to produce and
suggest it to HLS tools by restructuring the code
— See coming slides

 HLS tools today are not really meant to abstract away hardware design
issues from software programmers; in practice, they are more like

productivity tools to help hardware designers explore quickly the space of
hardware designs they may wish to produce

Naive FIR

acc = 0;
for (i = 3; i >= 0; i--) {
if (i == 0) {
shift reg[0] = x;

L acc += x * c[0];
—'| }—‘ } else {
shift reg[i] = shift reg[i-1];
/ acc += shift reg[i] * c[i];
}

}
y = acc;

Controller

acc

CO C1 C2 C3 Cc4 C5 C6 C7 C8 C9 Ci0 Ci11 C12 C13 Ci14 C15 C16

0 r:Z V:r multiplication add ‘ : :
: : : : e multiplication | add | : : :
2 : : : : : : : : : : : rd/wr] PR T
: : : : : : : : : : multiplication
’ : : : : : : : ; : : : rees | - - g

We are always computing both sides of the control decision, but which one is needed in a particular
iteration is perfectly evident

Loop Peeling

acc = 0;

for (1 = 3; i > 0; i--) {
shift reg[i] = shift reg[i-1];

|'_'_______________________________________-______. ------- ! acc += shift reg[i] * c[i];
1 e e o o o o s s o s s s s
O o o A i }
iiii L L L shift reg[0] = x;
iiii acc += x * c[0];
1 : e
N / y = ace;
TR
IJ 111
0 acc
Controller |--- i

CO C1 C2 C3 Cc4 C5 C6 C7 C8 C9 Ci0 C11 Ci12 C13 Ci14 C15 C16

0 r:ie/ “: multiplication add : _ ‘ :
: : : : r:ie/ v:r multiplication | add | : ; 5 :
2 ; : 3 : : : : : : : rd/wr Fm(Trmet
: : : : : : : : : : : multiplication
V. ‘ : : : : : : : : : regs : : :

 Theloop is doing two tasks completely independent from each other (shifting the signal samples and
computing the new output sample), so shall we split it into two loops?

Loop Fission

for (i = 3; 1 > 0; i--) {
shift reg[i] = shift reg[i-1];

}
shift reg[0] = x;

acc = 0;
for (i = 3; i > 0; i--) {
acc += shift reg[i] * c[i];

Controller

}
y = acc;

CoO C1 C2 C3 C4 C5 C6 C7 (€8 (€9 Ci0 Ci1 Ci12 Ci3 Ci14 Ci5 Ci6 C17 >

rd/wr
regs

multiplication add

rd/wr
LIE8S

multiplication add

rd/wr‘
‘.r.egs.

rd wr'
regs

w N R O

multiplication

* Not terribly useful per se, just two independent and parallel machines
* Does this create an opportunity to unroll loop 1? Note that it contains no computation...

Loop Unrolling (loop 1)

Controller

Loop 1 has become a “pipeline” (although a fairly degenerate one) by unrolling—this is certainly

desirable regardless

Loop 2 is not pipelined: the initiation interval is exactly equal to the latency of the kernel—unroll?

acc

shift reg[3]
shift reg[2]
shift reg[1]
shift reg[0]

acc = 0;
for (1 = 3;

i>0;

shift reg[2];
shift reg[l];
shift reg[0];
X7

i--) |

acc += shift reg[i] * c[i];

}
y = acc;

w N R O

rd/wr|

multiplication add

CO C1 C2 C3 C4 C5 Cb C7 C8 (C9 Ci10 Ci11 Ci12 C13 Ci4 Ci5

>

rd/wr|
rwr

/

regs

multiplication add

multiplication add

Loop Unrolling (loop 2)

shift reg[3]
shift reg[2]
shift reg[1l]
shift reg[O0]

shift reg[2];
shift reg[l];
shift reg[0];
Xy

acc = shift reg[3] * c[3];
X acc += shift reg[2] * c[2];
acc += shift reg[l] * c[1l];
acc += shift reg[0] * c[O0];
y = acc;
Controller

CO C1 C2 C3 C4 C5 Ce C7

—>»>
0 | rd/wr regs multiplication add |
1 [rd/wr regs multiplication add
2 |rd/wrregs multiplication add
3 |rd/wr regs multiplication
Y |

* De facto, a new iteration now starts every cycle

* But resources may be too much—and partial unrolling would achieve some pipelining but yet it would
still fill and drain the pipeline every iteration

Pipelining

Perfect pipelining cannot be achieved easily by rewriting the code

We need to schedule differently the operations within a loop so that
operations of different iterations take place simultaneously

Remember “software pipelining”? Now we need it so that a software
program represents a hardware pipeline

HLS needs to implement some form of modulo scheduling

Pipelining Result

shift reg[3]
shift reg[2]
shift reg[1l]

shift reg[2];
shift reg[l];
shift reg[O0];

shift reg[0] X;
acc = 0;
for (i = 3; 1 >= 0; i--) {
#pragma HLS pipeline
X—;D— acc += shift reg[i] * c[i];
}
y = acc;

coO C1 C2 C3 Cc4 G5 C6 C7 C8 (€9 Ci10 Ci1 Ci12 >
Controller | acc | 3 1 5 : 1 z 1 : : : : z s

0, rd/wr multiplication add

rd/wr . .
1| ees multiplication add

rd/wr : . .
2 § multiplication add

rd/wr 3 : T .
3 | rees § : multiplication add

* One output sample produced every 4 cycles and minimal resources

Loop Restructuring as with VLIWs

element i

multiplication

add

elementi—4

element i
add I

multiplj€ation

multiplication

. | add
Initiation

Interval =1 multiplication

multiplicatio m

multiplication add

Initiation Interval =5

multiplication add)
P elementi—4

multiplication add

multiplication m

multiplication add

element i

multiplication {dd |

multiplication add

multiplication add

multiplication

add

Classic HLS and VLIW Compilation

Striking resemblance of the two undertakings
— Both try to produce a static schedule of operations
— Both try to reduce to a minimum control decisions

Both suffer from similar limitations: they cope poorly with variability including
variable latency operations, uncertain events—such as memory dependencies,
unpredictable control flow (see part 3)

Both impose burdens onto the user: decisions on how and where to apply
optimizations are not self-evident, depend on the particular combination of user
constraints (note that the solution space is much wider for HLS), and thus are often
left to users through code restructuring or pragmas (see HLS lab)

Extent of

Programming Language Support
* Complete support for C/C++? Not quite:

— No dynamic memory allocation (no malloc(), etc.)

* Research work on providing such primitives for FPGA accelerators in high-end systems, for
instance

— No recursion
— Limited use of pointers-to-pointers
— No system calls (no printf(), etc.)

— Other limitations related to the ability to determine critical details (e.g., function
interfaces) at compile time

e Details vary from HLS tool to HLS tool

— Perhaps similarly to the early days of logic synthesis (which part of VHDL is
supported and with what exact meaning?)

Where Has Programmability Gone?

* FPGAs are an (increasingly?) important “programmable” technology in the hardware ¢ software
spectrum

* Early binding time gives performance and/or cost advantages

“Hardware” : “Software” 3
: E :
Physical Custom Gate : One-Time = °
Media: VLS| Array & Programmaple§ FPGA Processors 2
: : £
Binding First Metal - Fuse = Load Every £
Time: Mask Masks 2 Program & Config Cycle g
: : &
Fabricati:)n Time
Later Binding Time —>

< Faster and Smaller

Dynamically Scheduled High-Level Synthesis
(with Lana Josipovic)

High-level Synthesis and Static Scheduling

e High-level synthesis (HLS) may be the future of reconfigurable computing
— Design circuits from high-level programming languages

 Asseen in Part 2, classic HLS relies on static schedules
— Each operation executes at a cycle fixed at synthesis time

e Scheduling dictated by compile-time information
— Maximum parallelism in regular applications

— Limited parallelism when information unavailable at compile time
(i.e., latency, memory or control dependencies)

Part 3 Outline

What traditional HLS does not do well

The Limitations of Static Scheduling

for (i=0; i<N; i++) { 1: x[0]=5 » 1d hist[5]; st hist[5];

hist[x[1i]] = hist[x[i]] + weight[i]; 2: x[1]=4 » 1d hist[4]; st hisk[4];

} 3: x[2]=4 » 1d hist[4];St hist[4];
RAW dependency

Static scheduling (standard HLS tool)

— Inferior when memory accesses cannot be disambiguated at compile time

(on] c2 Cc3 C4 Cc5 C6 c7 Cc8 c9 C10 Cl1 C12 C13 Ci14

A 4

1 | o xjo] histl[s[on hist[x[0]] + weight[O] histﬂm]]

LD . . ST w
2 LD x[1] hist[x[1] hist[x[1]] + weight[1] hist[x[1]] \B—
; 02 |

hist[x][2]]

v

Dynamic scheduling

— Maximum parallelism: Only serialize memory accesses on actual dependencies
Cc1 C2 C3 c4 C5 cé6 c7 Cc8 c9 C10 c11 C12 C13 Ci4

E . : .
1 [0 x101 |, prvron hist[x[0]] + weight[0] hist{eo]

5 oy | 0l s eweightis] | A

3 LD x[2] : histﬁm hist[x[2]] + weight[2] e

a LD x[3] histliS[a0 hist[x[3]] + weight[3]

Statically vs. Dynamically Scheduled

Statically Scheduled Dynamically Scheduled
- “Compiler does the job” - “Hardware does the job”
Out-of-Order
Computer VLIW
: Superscalar
Architecture Processors
| \ Processors
Great for some embedded applications Catastrophic for general purpose
(expert developers, heavy manual code (out-of-the-box compilation
refactoring and optimizations, etc.) fails to deliver high performance)

It2aiuy

insiw~"

Statically vs. Dynamically Scheduled

Statically Scheduled Dynamically Scheduled
- “Compiler does the job” - “Hardware does the job”

Out-of-Order
Superscalar
Processors

Computer VLIW
Architecture Processors

High-Level Traditional HLS ? ? ?

Synthesis

Part 3 Outline

\/ What traditional HLS does not do well

Synthesis of dataflow circuits

A Different Way to Do HLS

* Refrain from triggering the operations through a centralized pre-planned controller

* Make scheduling decisions at runtime: as soon as all conditions for execution are
satisfied, an operation starts

Start: i=0 ‘H llT

"""""""""" Mg

fwg |
acc 1 m i, data il ey
1 | Fork | s
v v ‘ ‘-‘“
LD x[i] LD c[i] @ l LD x{i] | | FIFO | >
: !
| | Fork [oweightti] [Fork | T
Static N
N controller s ”mhist[xm”
4 stages

A
Br

]

s
ST hist[x[i]]
Exit: i=N

A Different Way to Do HLS

Asynchronous circuits: operators triggered when inputs are available
— Budiu et al. Dataflow: A complement to superscalar. ISPASS’05.

Dataflow, latency-insensitive, elastic: the synchronous version of it

— Cortadella et al. Synthesis of synchronous elastic architectures. DAC’06.

— Carloni et al. Theory of latency-insensitive design. TCAD’01.

— Jacobson et al. Synchronous interlocked pipelines. ASYNC’02.

— Vijayaraghavan et al. Bounded dataflow networks and latency-insensitive circuits. MEMOCODE’09.

How to create dataflow circuits from
high-level programs?

Dataflow Circuits

Example using the SELF (Synchronous ELastic Flow) protocol
— Cortadella et al. Synthesis of synchronous elastic architectures. DAC’06.

Every component communicates via a pair of handshake signals

The data is propagated from component to component as soon as memory and
control dependencies are resolved

4) 4)

valid

d
Component 1 ey Component 2

data
\O) N\ _J

Dataflow Components

Memory

data .| Subsystem
ST address; l

Store

ports data
ST address,

FIFO

data Buff
LD ‘address§
Load l
orts <data
P LD address=
Buffer

Functional units Memory interface
FIFO

Dataflow Components

0

O(Join
Fork Join
Branch Merge

Branch Merge

Dataflow Components

Q O

Fork O
Fork Join
Branch Merge

Branch Merge

Dataflow Components

Fork Join
Fork Join
O-» BOh Merge

[\

Branch Merge

Dataflow Components

Fork Join

Fork Join

\ D

Branch “Qe

Branch Merge

Dataflow Components

* Although inspired by asynchronous circuits, elastic circuits are strictly synchronous and
perfectly adapted to traditional VLSI and FPGA flows

datal;, datal,, data. datalon
n
data2;, data2, * dataZo,
stalll,,
validl,, —~ valid,, ,?D_CEL[ED%
stalll,, L valid;, ’

— valid2,,
valldz;, Sta”outi % E :,—Ifm_l stall2,
stall2,,; = stall,, -

Join Eager Fork

Synthesizing Dataflow Circuits

 Ctointermediate graph representation
— LLVM compiler framework

for (1i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];
}

Basic
block

Synthesizing Dataflow Circuits

e Constructing the datapath

i for (i=0; i<N; i++) {

hist[x[i]] = hist[x[i]] + weight[i];
}
LD x[i]
LD weight([i]
r ™
D hi;t[x[i]] Each operator corresponds to
a functional unit
y
o . J
4 stages

ST hist[x[i]]

Synthesizing Dataflow Circuits

* Implementing control flow

Start: i=0
|
Mg
for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];
}
mdal comb
LD weight([i]
[)
D hi;t[x[i]] A Merge for each variable
entering the BB
o G J
4 stages

ST hist[x[i]]

Synthesizing Dataflow Circuits

* Implementing control flow

Vo
Mg
for (1i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];
1 }
mdal comb
LD weight([i]
N é)
LD hist{x[il] A Branch for each variable
exiting the BB

4

o G J
4 stages Br

ST hist[x[i]] l

Exit: i=N

Synthesizing Dataflow Circuits

* Inserting Forks

Start: i=0
-
Mg
for (i=0; i<N; i++) {
\ hist[x[1i]] = hist[x[i]] + weight[i];
Fork }
] 1
v
LDIII] ‘ comb.
Fork LD weight][i] Fork
\ﬁ N é)
1D histilil] A Fork after every node with
multiple successors
4
o ' G J
4 stages Br
ST hist[x[i]] l

Exit: i=N

Part 3 Outline

\/ What traditional HLS does not do well

/ Synthesis of dataflow circuits

Buffers and performance

valas
48

e

&

Adding Buffers

Buffers and circuit functionality

.

Buffer insertion does not
affect circuit functionality

J

Adding Buffers

e Buffers and circuit functionality

| !

LD hist[x] LD weight][i]

Buffer insertion does not
affect circuit functionality

! k ,

* Buffers and avoiding deadlock

Buff

- . .
B:ff Each combinational loop in
1 the circuit needs to contain at
least one buffer
\. Y

Br

Adding Buffers

Start: i=0
I
Mg
A
Fork
7 1
v
LD x[i]
¢ | comb.
Fork LD weight][i] Fork
— \
LD hist[x[i]]
y
+ A
4 stages Br
‘ l

St hist[x[i]]

Adding Buffers

Start: i=0
Mg
l Two
combinational
| Fork 1 loops
v
LD x[i]
¢ | comb.
Fork LD weight[i] Fork
\ﬁ N
LD hist[x[i]]
y
+ v
4 stages Br
L 1
ST hist[x[i]]

Adding Buffers

LD X[i] “
¢ comb.

Fork LD weight][i] Fork
\ﬁ ‘ N

‘ LD hist[x[i]]

y /
+ A
4 stages Br

ST hist[x[i]] l

Exit: i=N

Adding Buffers

(on } c2 c3 ca c5 ce c7 c8 9 Cc10 Cl11 Cc12 C13 Ccl14 C15 Cle c17 Cci8 C19 c20
) . — ST
LD x[0] hist[x[0]] hist[x[0]] + weight[0] hist[x{0]]
LD x[1] histlifl " hist[x[1]] + weight[1] hi“s['I["
' : w2 | L° hist{x[2]] + weight[2] ST
hist[x[2]] E hist[x[2]]
LD)) ST
LD x[3] hist{x[3]] hist[x[3]] + weight[3] hist[x[3]]
LD x[4]

Backpressure from slow paths prevents pipelining

Optimizing Performance

Start: i=0
b
Mg
v
Buff
v
Fork
|
v
LD x[i]
¢ \ 4
Fork LD weight[i]
LD hist[x[i]]
4
+
4 stages
A A
ST hist[x[i]]

comb.

Fork

Optimizing Performance

Start: i=0

|
Mg
!

Buff
v

Fork

| 1
¢ j}j

LD (1] FIFO
! ‘ comb. Insert FIFOs into slow paths

Fork LD weight[i] Fork

T

FIFO ||LD histix[il]

4

+

4 stages Br

ST hist[x[i]] l

Optimizing Performance

BEFORE
Start: i=0 (without FIFOs)
l - Start: i=0
Vg i
Buff “cg
. @
| Fork 1 S
v R Fork
LD xIi] FIFO b 0 ”] 1
1 1 comb. :
Fork LD weight[i] Fork CI) ' comb.
N Fork LD t[i] Fork
FIFO LD hist[x[i]] \—l N
i ‘ LD hist[x[i]] [y
+ A
4
4 stages Br + |
v v l 4 stages Br
ST hist[x[i]]
Exit: i=N - l

ST hist[x[i]]

Exit: i=N

Optimizing Performance

NOW
(with FIFOs) BEFORE
Start: i=0 (without FIFOs)
l . Start: i=0
Vg |
Mg
(3
IF k 1 =
v/ R Fork
LD il FIEO] 1
1 comb. O
L
Fork LD! tt[i] Fork T comb.
L N Fork LD t[i] Fork
LD [il] \—l N
. ‘ LD hist[x[i]] ‘ y
+ A
4 stages Br + |
v v l 4 stages Br
ST hist[x[i]]
Exit: i=N - l
ST hist[x[i]] Erit: o
Xit: 1=

A W N R

Optimizing Performance

cC € ¢ ¢ ¢ . €7 € € cClo
l I .
LD x[0] histli':[O] hist[x[0]] + weight[0] hist?l[ﬂ]]
LD x[1] histligl " hist[x[1]] + weight[1] hist?I[l]]
2l IhistIEEIZH nist(zI] + weight(2] hiSt?’T‘m]
LD XI31 | icipetan hist{x[3]] + weight[3] e
y E : . |

A W N R

Optimizing Performance

Cl c2 Cc3 c4 C5 ce c7 c8 (o°] C10
D . . c
LD x[0] hist[x[0] hist[x[0]] + weight[0] hist[x[0]]
D i . ST
YoM Jnispfa] St + weightlT] istl(1]
LD x{2] IhistIESIZI isthd2l] + weight[2] hiSt?’T‘m]
RAW dependency

not honored!

What about memory?

Part 3 Outline

\/ What traditional HLS does not do well
/ Synthesis of dataflow circuits

/ Buffers and performance

The problem with memory

We Need a Load-Store Queue (LSQ)!

* Traditional processor LSQs allocate memory instructions in program order

Processor
datapath

loop:

1w $t1, 0($t0)

1w $t2, 0($t1)

mul $t2, $t2, $t3
sw $t2, 0($t0)
addi $t1, $ti1, 4
bne $t5, $t1, loop

We Need a Load-Store Queue (LSQ)!

* Traditional processor LSQs allocate memory instructions in program order

loop: 1w $t1, oO($te)
1w $t2, 0($t1)
mul $t2, $t2, $t3
sw $t2, 0($t0)
addi $t1, $ti1, 4
bne $t5, $t1, loop

Processor
datapath

e Dataflow circuits have no notion of program order

[How to supply program]
order to the LSQ?

Basic Idea

* An LSQ for dataflow circuits whose only difference is in the allocation policy:
— Static knowledge of memory accesses program order inside each basic block
— Dynamic knowledge of the sequence of basic blocks from the dataflow circuit

. , BB1: LD, ST
1 ,/\BBl is starting

LD x LD hist
LD weight ST hist
LD hist

Sl' hiU

LD hist
ST hist Memory

\ 4 V}

\ 4 A 4

Dataflow Circuit with the LSQ

B2 W N R

Cc1 Cc2 Cc3 Cc4 Cc5 Cé6 c7 c8 (o] C10 Cl1 C12 C13 Cla
| |
LD . . ST
LD x[0] hist[x[0]] hist[x[0]] + weight[0] hist{x[0]]
LD . . ST
LD x[1] hist[x[1] hist[x[1]] + weight[1] histix[1]] \E
i L . . ST
LD x[2] hist{x[2]] hist[x[2]] + weight[2] hist[x[2]]
LD . .
LD x[3] hist{x[3]] hist[x[3]] + weight[3]

High-throughput pipeline with
memory dependencies honored

Experimental Results

* Resource utilization and execution time of the dataflow designs, normalized to
the corresponding static designs produced by Vivado HLS.

) _ - B Dynamic
.Hlstogram I ® Static

]

o 8 | I

Q

N 1

E 7 g Vatrix Power |

5 |

c 6 .

v 5 . Pareto-dominated

=2 | by the static

L 4 ' design

wn !

3 .

5 3 Loop with |

Q condition 1 | FIR

& 2 B Loop with ! N

J condition 2 '
1 O, . __________

1
1
I

| I |
02 04 06 08 1 1.2 14 1.6
Execution time, normalized

Part 3 Outline

\/ What traditional HLS does not do well
/ Synthesis of dataflow circuits
/ Buffers and performance

\/ The problem with memory

Conquering new grounds with speculation

Nonspeculative vs. Speculative System

float d=0.0; x=100.0; int i=0; 1: a[0]=50.0; b[0]=30.0
2: a[l1l]=40.0; b[1]=40.0
do { 3: a[2]=50.0; b[2]=60.0 » exit
d = a[i] + b[i];
i++;
}

while (d<x);

Nonspeculative schedule
c1 c2 c3 c4 c5 c6 c7 c8 c9 Clo c11 ¢c12 c13 c14 C15 Cl6

Id a[0]]
Id b[0]

d1 = a[0] + b[0] di<x?

Id a[1] :
| id b[1]

d2 = a[1] + b[1] d2<x?

Id a[2] :
Id b[2]

d3 = a[2] + b[2] d3<x? | exit

A W N R

Nonspeculative vs. Speculative System

float d=0.0; x=100.0; int i=0; 1: a[0]=50.0; b[0]=30.0
2: a[l1l]=40.0; b[1]=40.0
do { 3: a[2]=50.0; b[2]=60.0 » exit
d = a[i] + b[i];
i++;
}

while (d<x);

Nonspeculative schedule
c1 c2 c3 c4 c5 c6 c7 c8 c9 Clo c11 ¢c12 c13 c14 C15 Cl6

Id a[0]]
Id b[0]

d1 = a[0] + b[0] di<x?

Id a[1] :
| 1d b[1]

d2 = a[1] + b[1] d2<x?

1

E H
I D s
a : : i : i : i i i :

d3 = a[2] + b[2] d3<x? | exit

Speculative schedule
c1 c2 c3 ca (o c6 c7 c8 c9 cl0 c11 c12 (€13 Cc14 C15 Cl6

A 4

1 :: E[[g} d1 = a[0] + b[0] d1<x?
2 :: EE} d2 = a[1] + b[1] d2<x?
3 : Ll d3 =a[2] + b[2] d3<x?
Id b[2] N
4 : :g ;{:]] da = a[3] + b[3] \ i
5 : Id a[4]

_ Vo
Id b[4] d5 = a[4] + b[4] exit

Nonspeculative Dataflow Circuit

Start, i=0
Merge
v
Buff
v
. Fork
1 I . |
G_] Load a[i] Load bJ[i]
l |
comb 1 [
3 stages
+
d x
} 1
! <
Branch |« I comb.

1

End

float d=0.0; x=100.0; int 1=0;

do {
d = a[i] + b[i];
i++;

}

while (d<x);

Nonspeculative Dataflow Circuit

Sta%o

Merge
on
float d=0.0; x=100.0; int 1=0;
Fark
1 do {
I i | d = a[i] + b[il;
- Load a[i] Load g[i] } e
omb. | 1T | while (d<x);

3 stages

\ 4

Branch

1

End

Nonspeculative Dataflow Circuit

Nonspeculative schedule
C1 Cc2 C3 Cc4 C5 Cé Cc7 Cc8 c9 C10 C11 C12 C13 Cc14 C15 Cle X

Id a[0]

d1 = a[0] + b[0] d1<x?

B W N =

Id b[0] ;
: Id a[1]
Id b[1]

d2 = a[1] + b[1] d2<x?

1daiz] |
Id b[2]

d3 =a[2] + b[2] d3<x? exit

Long control flow decision
prevents pipelining

Speculation in Dataflow Circuits

* Contain speculation in a region of the circuit delimited by special
components

— Issue speculative tokens (pieces of data which might or might not be correct)

— Squash and replay in case of misspeculation
\ 2 / \ 2 /

Merge Merge

E guEEEEEEEEEEEEE . :- '
Store E

data + handshake
Exit | =000 memeemeses speculative tag

Speculation in Dataflow Circuits

* Contain speculation in a region of the circuit delimited by special
components

— Issue speculative tokens (pieces of data which might or might not be correct)
— Squash and replay in case of misspeculation

\ 2

Merge

Load

Store l Commit ;

Store

data + handshake

Exit | =000 memeemeses speculative tag

Speculation in Dataflow Circuits

* Contain speculation in a region of the circuit delimited by special
components

— Issue speculative tokens (pieces of data which might or might not be correct)
— Squash and replay in case of misspeculation

\ 2

Merge

Store l Commit ;

Store

data + handshake

Exit | =000 memeemeses speculative tag

Speculation in Dataflow Circuits

* Contain speculation in a region of the circuit delimited by special
components

— Issue speculative tokens (pieces of data which might or might not be correct)
— Squash and replay in case of misspeculation

\ 2

"""

data + handshake
Exit | =000 memeemeses speculative tag

Store

Speculation in Dataflow Circuits

* Contain speculation in a region of the circuit delimited by special
components

— Issue speculative tokens (pieces of data which might or might not be correct)
— Squash and replay in case of misspeculation

data + handshake
Exit | =000 memeemeses speculative tag

Components for Speculation

* Speculator

— Dataflow component which can, besides its standard functionality, also inject
tokens before receiving any at its input(s)

— Branch Speculator, LSQ

data
e
Load address
Spec.
LSQ
data |
Store addressI

Components for Speculation

* Speculator

— Dataflow component which can, besides its standard functionality, also inject
tokens before receiving any at its input(s)

— Branch Speculator, LSQ

Components for Speculation

* Save units
— Input boundary of the speculative region
— Reissues when previous computation is squashed

7

[X37- ‘ ~

Save a copy of all regular tokens

which may become speculative
. y

Components for Speculation

* Save units
— Input boundary of the speculative region
— Reissues when previous computation is squashed

l

B i
1 1
: Fork :
/ Save /<--I | - |
I : e B
I 1 Buff I
1 1
: < : resend/
I Branch [« - drop
1 1
L] T L
I ‘ sink 1
1 1
1 1
1 1

I
l
|
l
l
l
l
l
1

Components for Speculation

* Commit units
— Output boundary of the speculative region
— Propagate speculative tokens that turn out to be correct, squash misspeculated data

l

4 N
Propagate further speculative results

which turn out to be correct
_ y

1

Store

Components for Speculation

* Commit units
— Output boundary of the speculative region
— Propagate speculative tokens that turn out to be correct, squash misspeculated data

|
| save fe-

=l B Ee—

o)
-
Q)
=>
(@]
=
-J---
o
(7]
(@]
Q
-
Q.
~N

1

Store

Placing the Components for Speculation

* Save units
— On each path to any component that could combine the token with a speculative
— As close as possible to the paths carrying speculative tokens

\ 2 |

JH —

AN EEEEEEEEERERERER L o EE
e
Commit

Store

Exit

Placing the Components for Speculation

* Save units
— On each path to any component that could combine the token with a speculative
— As close as possible to the paths carrying speculative tokens

\ 2 |

JH —

AN EEEEEEEEERERERER L o EE
e
Commit

Store

Exit

Placing the Components for Speculation

* Commit units
— On each path from the Speculator to an exit point, a store unit, or the Speculator
— As far as possible from the Speculator

Branch
I :
|

Store Commit .
2
Store

Exit

Placing the Components for Speculation

* Commit units
— On each path from the Speculator to an exit point, a store unit, or the Speculator
— As far as possible from the Speculator

g UEEEEEEERE® I."
- & Y2
S : ; ” 4 1
............ ,,’ 1
: -]
]
]
----------------- '
]
]
I
=]
!
']
ST Commit . ‘
o

Store

Exit

Speculative Tag

* Extending dataflow components with a speculative tag
— An additional bit propagated with the data or OR’ed from all inputs

Fork Buff

data + handshake
.......... speculative tag

Speculative Dataflow Circuit

Start, i=0
Merge
v
Buff
v

. Fork
! T 1 |

- 1=

+ | Load a[i] Load b[i]
L |

1 L

+
d
I_l
Branch ¢]
— |
End

<+ X

Speculative Dataflow Circuit

Start, i=0
Merge
v
Buff
v

. Fork
' T 1 |

- 1=

Load ali] Load b[i]
+ oaI a[i oaI i - N

Y3y Speculator instead of
g regular Branch

|
*[:L
e X

End

Speculative Dataflow Circuit

Start, i=0

3 |

Merge

Buff

v

Fork

End

J 1 I_l

Load a[i]

Load b[i]

|
<-|—Q.
- >

Input boundary:
Save units

Speculative Dataflow Circuit

Start, i=0

- =

3 |

Merge

Buff

v

Fork

J 1 I_l

Load a[i]

Load b[i]

|
<-|—Q.
- >

Output boundary:
Commit units

Speculative Dataflow Circuit

Start, i=0

3 |

Merge

Buff

v

Fork

J 1 I_l

Load a[i]

Load b[i]

|
<-|—Q.
- >

End

Output boundary:
Commit units

Speculative Dataflow Circuit

St =

Speculative Dataflow Circuit

B W N =

c1 2 c3 4 G C6 7 s 9 cC10 c11 c12 C13 Cc14 C15 C16
ida[o] | - : - :
ool d1 = a[0] + b[0] d1<x?
Id a[1] _
| b 2 = 1] +bl1] d2<x? : | | | _
: : : ' :: ;{:} d3 = a[2] + b[2] d3<x? | exit
4)

_

Single speculation at a time
cannot achieve maximum parallelism

J

Increasing Performance

* Merging the Save and Commit unit on cyclic paths

Commit unit:
« Stalls speculative tokens
* Discards misspeculated tokens

Save unit:
* Saves and reissues tokens

Buff
¥
Branch |«=j= drop
1
sink

1

1

1

1

1

1

1

1

1

: resend/
r
1

1

1

1

1

1

Increasing Performance

* Merging the Save and Commit unit on cyclic paths

Commit unit: Save-Commit unit:
e Stalls speculative tokens * Lets speculative tokens pass

* Discards misspeculated tokens Discards misspeculated tokens

Saves and reissues tokens

. [)
e ———————— 1
: 1'. I
. :]

: pass= r---- * --------
: Sranh I__discard/ : Idiscard/
: l 1 | pass Branch |+===v-4-

I
l——

|
I |
sink I I .: pass
""""""" : | Lo
I l: sink : :
H | -
Save unit: : : Fork i :
* Saves and reissues tokens E I__‘l Lo
I EEEm
[|
— BT 8
|| Fork : : FIFO [e--' |
______ |
: |] !
i Buff : 1] : resend/
! T] : Branch [*====1- drop
I . . resend/ i . i
: ranch [~ drop R R lk :
1 sin
LT | [:
: Merge : l—---t:. _________ -
| 1 .

Increasing Performance

* Merging the Save and Commit unit on cyclic paths

Commit unit: Save-Commit unit:
e Stalls speculative tokens * Lets speculative tokens pass

* Discards misspeculated tokens Discards misspeculated tokens

Saves and reissues tokens

|
_ I discard/
sink pass

Save unit: ;
e Saves and reissues tokens

e B

1 I

: Fork :

I =

i Buff : resend/

! I 4====1= dro

: ! : resend/ P

1 Branch <=y drop

I

i T |

1 sink 1

: Merge :

I 1

Increasing Performance

* Merging the Save and Commit unit on cyclic paths

Commit unit: Save-Commit unit:
e Stalls speculative tokens * Lets speculative tokens pass

* Discards misspeculated tokens Discards misspeculated tokens

Saves and reissues tokens

. [)
e ———————— 1
: 1'. I
. :]

: pass= r---- * --------
: Sranh I__discard/ : I discard/
: l 1 | pass Branch |+===v-4-

I
l-- | |

‘V:

pass

1

sink

I
' i
I i1
I o
I i
I Pl
Save unit: [i
. I I
) m— I I :
* Saves and reissues tokens I b
I
o
i t' I : ol
1 1 |
: Fork : : 1 I
I
1 1 |
: I_vl | i |
i Buff | 1 I
I T I :
: : resend/ I
: Branch i drop i
I 1 : 1
1 sink 1 |
1 1
1 1
1 1

Increasing Performance

* Merging the Save and Commit unit on cyclic paths

Commit unit: Save-Commit unit:
e Stalls speculative tokens * Lets speculative tokens pass

* Discards misspeculated tokens Discards misspeculated tokens

Saves and reissues tokens

. [)
e ———————— 1
: 1'. I
. :]

: pass= r---- * --------
: Sranh I__discard/ : Idiscard/
: l 1 | pass Branch |+===v-4-

I
l——

|
I |
sink I |.= pass
""""""" : | Lo
I l: sink : :
H™N | -
Save unit: : : Fork i :
* Saves and reissues tokens I I__‘l Lo
I EEEm
= [|
i — [N
|| Fork : : : FIFO [e--' |
D |
== L :
I Buff I 1 : L ; resend/
| = o o oy
: — | [(Brench J----1- drop
I S . resend/ I : ’ |
| s R
1 1 sin
: sink= 1 Merge :
: Merge : l—---t:. _________ o
| 1 .

Increasing Performance

* Merging the Save and Commit unit on cyclic paths

Commit unit: Save-Commit unit:
e Stalls speculative tokens * Lets speculative tokens pass
* Discards misspeculated tokens * Discards misspeculated tokens

e Saves and reissues tokens

S S — .

: 1'. :

e R

! Branch I discard/ H I ==
1 .

: l 1 i pass Branch ‘____T__:Ldlscard“
| [

|
|
sink I i 1 pass |
—————————————— : E l : I----ﬂ
I l: sink : :
H | -
Save unit: : : Fork i :
* Saves and reissues tokens E I__‘l Lo
I EEEm
1
e — BT 8
|| Fork : : FIFO [e--' |
______ |
: I_l : : = -y
: Buff : : ¥ resend/ 1
! ! Branch [-—---94 d |
: ! : resend/ : . 1|-: L -
: Branch : drop I + -+ lk :
| sin
Ny | [were ;
: Merge : l—---t:. _________ -
| 1 .

Increasing Performance

* Merging the Save and Commit unit on cyclic paths

Start, i=0

1 |

Merge

Loa& ali] Load b[i]

| |
vy ¥

+
d x
I_lr 4

Commit

End

Increasing Performance

* Merging the Save and Commit unit on cyclic paths

Start, i=0 Start, i=0
] |] |
Merge Merge

Ferk

Loa¥ a[i] Load bli]

| |
vy ¥

+!
Iz
- X

Spec. | T
Branch |

] 3

! Commit f

End

i B W N R

Increasing Performance

Cl c2 Cc3 c4 Cc5 cé Cc7 c8 c9 C10 Cl1 C12 Ci13 C14 C15 Cl6
id a[0] - '
Id b[0] d1 =a[0] + b[0] di<x?
Id a[1] _
Id b[1] d2 = a[1] + b[1] d2<x?
: Id a[2] _
Id b[2] d3 = a[2] + b[2] d3<x?h
i Id a[3] _ .
Id b[3] d4 = a[3] + b[3] \ exit
: Id a[4] .
exit

Id b[4]

d5 = a[4] + b4] |"

Results

* Timing and resources: traditional HLS (Static) and dataflow circuits with
speculation (Speculative)
— Cases where dynamic scheduling on its own cannot achieve high parallelism !

2.0 ' @ Spec.
Backtrack ' @® Static
186 ™ !
' Newton-Raphson |
S 1.6 Subdiagonal !
N n !
® 1.4 n |
g While loop |
o 1.2+ !
C_\ Fixed point !
g 104 - - ------ - . ®--- -
Q '
% 08 :
wn
8 |
< 0.6 !
8 1
3 04 !
0.2 :
T T T T : >
0.2 04 0.6 08 1.0

(5x) (25x) (1.67x) (1.25x) (1x)
Execution time, normalized

1 Press et al. Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, 3rd edition.

Part 3 Outline

\/ What traditional HLS does not do well
/ Synthesis of dataflow circuits
/ Buffers and performance
\/ The problem with memory

\/ Conquering new grounds with speculation

&N

What to Expect from Dynamic HLS?

Two hopes derived from the VLIW vs. OoO analogy:

— Significantly better performance in control dominated applications with poorly predictable memory
accesses

— Better out-of-the-box performance
The former is almost certain, the second less so

A major issue is the hardware overhead of supporting dynamic schedules
— Probably tolerable for the bulk of the circuits
— Yet, LSQs represent quite tangible overheads, esp. in FPGAs (but could be hardened there)

Probably statically-scheduled HLS remains the best choice for classic DSP-like
applications

Conclusions
on Processor Customization and HLS

Customizable processors and high-level synthesis are promising techniques to
accelerate program execution through customized hardware

We may need more of this in a post-Moore (no transistor scaling) and post-Dennard
(no power scaling) world

Yet, all these techniques require considerable manual work and expertise (at least to
obtain decent results)

Current research tries both to improve the quality of HLS-generated circuits as well as
moving further up the level of abstraction to extract more easily more parallelism
(e.g., domain-specific languages)

References

Part 1
* J. A. Fisher, Customized Instruction-Sets for Embedded Processors, DAC, June 1999
* P.lenne andR. Leupers, eds., Customizable Embedded Processors, MK, 2006

Part 2

* G. Martin and G. Smith, High-Level Synthesis: Past, Present, and Future, IEEE Design & Test of Computers, July/August 2009
* J.Cong and Z. Zhang, An efficient and versatile scheduling algorithm based on SDC formulation, DAC, July 2006

* R.Kastner, J. Matai, and S. Neuendorffer, Parallel Programming for FPGAs, https://arxiv.org/abs/1805.03648, May 2018

Part 3

* L. Josipovic, R. Ghosal, and P. lenne, Dynamically Scheduled High-level Synthesis, ISFPGA, February 2018

* L. Josipovic, Ph. Brisk, and P. lenne, An Out-of-Order Load-Store Queue for Spatial Computing, ACM TECS, September 2017
* L. Josipovic, A. Guerrieri, and P. lenne, Speculative Dataflow Circuits, ISFPGA, February 2019

* L. Josipovic, S. Sheikhha, A. Guerrieri, P. lenne, Jordi Cortadella, Buffer Placement and Sizing for High-Performance Dataflow
Circuits, ISFPGA, February 2020 (Best Paper Award)

* L. Josipovi¢, A. Guerrieri, P. lenne, Dynamatic: From C/C++ to Dynamically Scheduled Circuits, ISFPGA, February 2020

[dynamatic.epfl.ch]

https://arxiv.org/abs/1805.03648

	Advanced�Computer Architecture�—�Part II: Embedded Computing�From Processor Customization to HLS
	Four Generations of Alpha
	Cost of Additional Performance
	Reminder of �Embedded Processors Specificities
	Increasing the �Efficiency of Implementations
	1
	Tensilica Xtensa
	ARC 625D�Configuration Possibilities
	Benefits of Customization
	Mainstream ASIC/FPGA Processors and Specialisation?
	Tensilica Xpres�Automatic Configuration Tool
	Compilers as Design Tools
	EDA Meets Computer Architecture
	User Designed Customizations?�Instruction Set Extensions
	Instruction Set Extensions (ISE)
	Elementary Motivational Example�An Important Kernel…
	Software Predication
	Loop Kernel DAG
	New Unit To Accelerate�Shift-and-Add Multiplication Loop
	Loop Unrolling
	Full DAG
	New Unit To Accelerate�Multiplication?! Yeah, a MUL…
	Classic “Specialisation”…
	Why Hardware Is Better?
	Spatial Computation
	No Time Quantization
	Constants�Example
	Bitwidth Analysis�Example
	Arithmetic Optimizations
	Why Hardware Is Better?
	Gain Potentials in Ad-hoc FUs:�Tangible Cycle Savings Possible
	Automatic ISE Discovery
	Automatic ISE Discovery
	Automatic ISE Discovery�Examples
	Processor Customization?
	2
	Beyond Dataflow
	A Bit of History
	What Circuits �Do We Want HLS to Generate?
	Architectural Template
	Scheduling the Datapath
	Same as VLIW Scheduling?
	Area Optimizations
	Chaining and Pipelining
	Scheduling under �Resource Constraints
	Example: FIR
	A Literal Translation…
	Naïve FIR
	Manual Code Refactoring
	Naïve FIR
	Loop Peeling
	Loop Fission
	Loop Unrolling (loop 1)
	Loop Unrolling (loop 2)
	Pipelining
	Pipelining Result
	Loop Restructuring as with VLIWs
	Classic HLS and VLIW Compilation
	Extent of �Programming Language Support
	Where Has Programmability Gone?
	3
	High-level Synthesis and Static Scheduling
	Part 3 Outline
	The Limitations of Static Scheduling
	Slide Number 65
	Slide Number 66
	Part 3 Outline
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Part 3 Outline
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Part 3 Outline
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Part 3 Outline
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Slide Number 105
	Slide Number 106
	Slide Number 107
	Slide Number 108
	Slide Number 109
	Slide Number 110
	Slide Number 111
	Slide Number 112
	Slide Number 113
	Slide Number 114
	Slide Number 115
	Slide Number 116
	Slide Number 117
	Slide Number 118
	Slide Number 119
	Slide Number 120
	Slide Number 121
	Slide Number 122
	Slide Number 123
	Slide Number 124
	Slide Number 125
	Slide Number 126
	Slide Number 127
	Slide Number 128
	Slide Number 129
	Slide Number 130
	Slide Number 131
	Slide Number 132
	Slide Number 133
	Slide Number 134
	Slide Number 135
	Slide Number 136
	Slide Number 137
	Slide Number 138
	Slide Number 139
	Part 3 Outline
	What to Expect from Dynamic HLS?
	Conclusions �on Processor Customization and HLS
	References

